{"title":"Development of a Novel MOFs-Based Nanofiber for Highly Selective Removal of Cobalt from Aqueous Solutions","authors":"Yinyin Peng, Yang Luo, Shuyuan Liu, Cong Yin, Derong Liu, Bowen Hu, Xiaoqin Pu, Guoyuan Yuan, Wei Xiong","doi":"10.1039/d4en01058b","DOIUrl":null,"url":null,"abstract":"The challenge of cobalt ion separation was addressed by developing a novel MOFs nanofiber, Co(II)-PIIMs. Initially, Co(II)-SIM-IIP were synthesized using zinc-based MOFs (SIM-1) as a matrix and tetraethylpentadiamine (TEPA) as a functional monomer through ion imprinting technique (IIT). Subsequently, Co(II)-PIIMs-x nanofibers were fabricated via electrospinning. Co(II)-SIM-IIP were incorporated as fillers, while PAN was used as the substrate, aiming at selectively separating cobalt ions. Optimal performance was achieved with a 10% doping level of Co(II)-SIM-IIP, resulting in adsorptive capacity peaking at 112.74 mg/g, along with membrane flux of 1095 L/m² h, and a retention rate of 43.49%. The material exhibited excellent selectivity with high selectivity factors for various ions such as Ca2+ (7.42), K+ (55.98), Mg2+ (72.30), and Ni2+ (1.28). Adsorption mechanism results indicated that cobalt adsorption by Co(II)-PIIMs is governed by the adsorption rate control step and the even distribution of cobalt on the surface, aligning with chemisorption properties. After five adsorption-desorption cycles, Co(II)-PIIMs demonstrated excellent regeneration capability, maintaining over 95% of their initial adsorption capacity. These impressive selectivity factors underscore the material's capability to selectively adsorb cobalt ions over other competing ions, making it a promising candidate for efficient separation and purification processes in environmental remediation applications.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en01058b","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The challenge of cobalt ion separation was addressed by developing a novel MOFs nanofiber, Co(II)-PIIMs. Initially, Co(II)-SIM-IIP were synthesized using zinc-based MOFs (SIM-1) as a matrix and tetraethylpentadiamine (TEPA) as a functional monomer through ion imprinting technique (IIT). Subsequently, Co(II)-PIIMs-x nanofibers were fabricated via electrospinning. Co(II)-SIM-IIP were incorporated as fillers, while PAN was used as the substrate, aiming at selectively separating cobalt ions. Optimal performance was achieved with a 10% doping level of Co(II)-SIM-IIP, resulting in adsorptive capacity peaking at 112.74 mg/g, along with membrane flux of 1095 L/m² h, and a retention rate of 43.49%. The material exhibited excellent selectivity with high selectivity factors for various ions such as Ca2+ (7.42), K+ (55.98), Mg2+ (72.30), and Ni2+ (1.28). Adsorption mechanism results indicated that cobalt adsorption by Co(II)-PIIMs is governed by the adsorption rate control step and the even distribution of cobalt on the surface, aligning with chemisorption properties. After five adsorption-desorption cycles, Co(II)-PIIMs demonstrated excellent regeneration capability, maintaining over 95% of their initial adsorption capacity. These impressive selectivity factors underscore the material's capability to selectively adsorb cobalt ions over other competing ions, making it a promising candidate for efficient separation and purification processes in environmental remediation applications.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis