Highly stable and reusable ZrHfN nanorod films: An alternative SERS substrate via reactive co-sputtering with OAD technique

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
T. Chaikeeree, N. Kasayapanand, N. Mungkung, W. Phae-ngam, R. Botta, T. Lertvanithphol, K. Dhanasiwawong, H. Nakajima, S. Arunrungrusmi, N. Bodinthitikul, A. Klamchuen, M. Horprathum
{"title":"Highly stable and reusable ZrHfN nanorod films: An alternative SERS substrate via reactive co-sputtering with OAD technique","authors":"T. Chaikeeree, N. Kasayapanand, N. Mungkung, W. Phae-ngam, R. Botta, T. Lertvanithphol, K. Dhanasiwawong, H. Nakajima, S. Arunrungrusmi, N. Bodinthitikul, A. Klamchuen, M. Horprathum","doi":"10.1016/j.apsusc.2025.162500","DOIUrl":null,"url":null,"abstract":"Transition metal nitride nanostructures have garnered significant attention as promising alternative plasmonic sensing materials for surface-enhanced Raman scattering (SERS) substrates due to their low cost and favorable physical, chemical, and plasmonic properties. This work demonstrates the deposition and characterization of zirconium hafnium nitride (ZrHfN) nanorod films as an alternative SERS substrate. The ZrHfN nanorod films were prepared using closed-field dual-cathode DC unbalanced reactive magnetron sputtering with the oblique angle deposition (OAD) technique. The influence of the sputtering current of the Hf target was investigated and comprehensively characterized using FE-SEM, GIXRD, AFM, TEM-EDS mapping, XPS, and XAS. Using Rhodamine 6G (R6G) dye as the target analyte, the SERS performance of the ZrHfN nanorod films was evaluated. Our systematic investigation shows that the optimal ZrHfN nanorod films, prepared at a sputtering current of 800 mA for the Hf target, exhibited an enhancement factor of 9.07 × 10<sup>5</sup> with 4.87 %-RSD at 1512 cm<sup>−1</sup>. Moreover, the limit of detection for optimal ternary nitride SERS substrate was determined to be 1.88 × 10<sup>−7</sup> M, with excellent reusability, long-term stability, and high-temperature resistance. Additionally, detecting trace levels of toxic paraquat herbicide was demonstrated, indicating potential for practical applications.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"11 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2025.162500","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal nitride nanostructures have garnered significant attention as promising alternative plasmonic sensing materials for surface-enhanced Raman scattering (SERS) substrates due to their low cost and favorable physical, chemical, and plasmonic properties. This work demonstrates the deposition and characterization of zirconium hafnium nitride (ZrHfN) nanorod films as an alternative SERS substrate. The ZrHfN nanorod films were prepared using closed-field dual-cathode DC unbalanced reactive magnetron sputtering with the oblique angle deposition (OAD) technique. The influence of the sputtering current of the Hf target was investigated and comprehensively characterized using FE-SEM, GIXRD, AFM, TEM-EDS mapping, XPS, and XAS. Using Rhodamine 6G (R6G) dye as the target analyte, the SERS performance of the ZrHfN nanorod films was evaluated. Our systematic investigation shows that the optimal ZrHfN nanorod films, prepared at a sputtering current of 800 mA for the Hf target, exhibited an enhancement factor of 9.07 × 105 with 4.87 %-RSD at 1512 cm−1. Moreover, the limit of detection for optimal ternary nitride SERS substrate was determined to be 1.88 × 10−7 M, with excellent reusability, long-term stability, and high-temperature resistance. Additionally, detecting trace levels of toxic paraquat herbicide was demonstrated, indicating potential for practical applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信