Small polarons mediated near-room-temperature metal–insulator transition in vanadium dioxide and their hopping dynamics

IF 11.9 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Xiongfang Liu, Tong Yang, Shanquan Chen, Jing Wu, Chi Sin Tang, Yuanjie Ning, Zuhuang Chen, Liang Dai, Mengxia Sun, Mingyao Chen, Kun Han, Difan Zhou, Shengwei Zeng, Shuo Sun, Sensen Li, Ming Yang, Mark B. H. Breese, Chuanbing Cai, Thirumalai Venkatesan, Andrew T. S. Wee, Xinmao Yin
{"title":"Small polarons mediated near-room-temperature metal–insulator transition in vanadium dioxide and their hopping dynamics","authors":"Xiongfang Liu, Tong Yang, Shanquan Chen, Jing Wu, Chi Sin Tang, Yuanjie Ning, Zuhuang Chen, Liang Dai, Mengxia Sun, Mingyao Chen, Kun Han, Difan Zhou, Shengwei Zeng, Shuo Sun, Sensen Li, Ming Yang, Mark B. H. Breese, Chuanbing Cai, Thirumalai Venkatesan, Andrew T. S. Wee, Xinmao Yin","doi":"10.1063/5.0236807","DOIUrl":null,"url":null,"abstract":"Researchers pursuing advanced photoelectric devices have discovered near room-temperature metal–insulator transitions (MIT) in nonvolatile VO2. Despite theoretical investigations suggesting that polaron dynamics mediate the MIT, direct experimental evidence remains scarce. In this study, we present direct evidence of the polaron state in insulating VO2 through high-resolution spectroscopic ellipsometry measurements and first-principles calculations. We illustrate the complementary role of polaron dynamics in facilitating Peierls and Mott transitions, thereby contributing to the MIT processes. Furthermore, our observations and characterizations of conventional metallic and correlated plasmons in the respective phases of the VO2 film offer valuable insight into their electron structures. This investigation enhances comprehension of the MIT mechanism in correlated systems and underscores the roles of polarons, lattice distortions, and electron correlations in facilitating phase transition processes in strongly correlated systems. Additionally, the detailed detection of small polarons and plasmons serves as inspiration for the development of new device functionalities.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"45 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0236807","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers pursuing advanced photoelectric devices have discovered near room-temperature metal–insulator transitions (MIT) in nonvolatile VO2. Despite theoretical investigations suggesting that polaron dynamics mediate the MIT, direct experimental evidence remains scarce. In this study, we present direct evidence of the polaron state in insulating VO2 through high-resolution spectroscopic ellipsometry measurements and first-principles calculations. We illustrate the complementary role of polaron dynamics in facilitating Peierls and Mott transitions, thereby contributing to the MIT processes. Furthermore, our observations and characterizations of conventional metallic and correlated plasmons in the respective phases of the VO2 film offer valuable insight into their electron structures. This investigation enhances comprehension of the MIT mechanism in correlated systems and underscores the roles of polarons, lattice distortions, and electron correlations in facilitating phase transition processes in strongly correlated systems. Additionally, the detailed detection of small polarons and plasmons serves as inspiration for the development of new device functionalities.
二氧化钒中小极化子介导的近室温金属-绝缘体跃迁及其跳变动力学
研究先进光电器件的研究人员在非易失性VO2中发现了接近室温的金属绝缘体转变(MIT)。尽管理论研究表明极化子动力学介导了MIT,但直接的实验证据仍然很少。在这项研究中,我们通过高分辨率光谱椭偏测量和第一性原理计算,提供了绝缘VO2中极化子态的直接证据。我们说明了极化子动力学在促进佩尔斯和莫特跃迁中的互补作用,从而有助于MIT过程。此外,我们对VO2薄膜中各自相的传统金属和相关等离子体激元的观察和表征为了解它们的电子结构提供了有价值的见解。这项研究增强了对相关体系中MIT机制的理解,并强调了极化子、晶格扭曲和电子相关在促进强相关体系中相变过程中的作用。此外,小极化子和等离子体激元的详细检测为新设备功能的开发提供了灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信