Polaron hopping induced dual-band absorption in all amorphous cathodic electrochromic oxides

IF 11.9 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Renfu Zhang, Menghan Yin, Peipei Shao, Qingjiao Huang, Gunnar A. Niklasson, Rui-Tao Wen
{"title":"Polaron hopping induced dual-band absorption in all amorphous cathodic electrochromic oxides","authors":"Renfu Zhang, Menghan Yin, Peipei Shao, Qingjiao Huang, Gunnar A. Niklasson, Rui-Tao Wen","doi":"10.1063/5.0244549","DOIUrl":null,"url":null,"abstract":"Electrochromic oxides have tremendous potential applications in smart windows, displays, and camouflage due to their capability for selective modulation of visible and near-infrared optical spectra. Although these applications are dependent on the optical performance, the origin of the optical absorption in electrochromic oxides is not clear. Here, we demonstrate that the electrochromism of all amorphous cathodic electrochromic oxides can be described by a combination of polaron and bipolaron hopping. Based on the valences of the metallic constituents, we model experimental optical absorption spectra by polaron theory and assign two prominent absorption peaks to polaronic and bipolaronic charge transfer excitations. However, in the special case of V2O5, three peaks were necessary to fit the optical spectra. The activation energies of polaronic and bipolaronic hopping were remarkably similar for all the cathodic oxides studied. Within the framework of polaron absorption, V2O5 would be categorized as a cathodic oxide, rather than as a mixed anodic/cathodic material as in the conventional picture. We emphasize that our findings here not only offer a profound understanding of all amorphous cathodic electrochromic oxides but also pave the way for exploring electrochromic oxides with dual-band modulations.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"32 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0244549","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochromic oxides have tremendous potential applications in smart windows, displays, and camouflage due to their capability for selective modulation of visible and near-infrared optical spectra. Although these applications are dependent on the optical performance, the origin of the optical absorption in electrochromic oxides is not clear. Here, we demonstrate that the electrochromism of all amorphous cathodic electrochromic oxides can be described by a combination of polaron and bipolaron hopping. Based on the valences of the metallic constituents, we model experimental optical absorption spectra by polaron theory and assign two prominent absorption peaks to polaronic and bipolaronic charge transfer excitations. However, in the special case of V2O5, three peaks were necessary to fit the optical spectra. The activation energies of polaronic and bipolaronic hopping were remarkably similar for all the cathodic oxides studied. Within the framework of polaron absorption, V2O5 would be categorized as a cathodic oxide, rather than as a mixed anodic/cathodic material as in the conventional picture. We emphasize that our findings here not only offer a profound understanding of all amorphous cathodic electrochromic oxides but also pave the way for exploring electrochromic oxides with dual-band modulations.
极化子跳变诱导所有非晶阴极电致变色氧化物的双带吸收
电致变色氧化物具有选择性调制可见光和近红外光谱的能力,在智能窗口、显示器和伪装领域具有巨大的应用潜力。虽然这些应用依赖于光性能,但电致变色氧化物的光吸收来源尚不清楚。在这里,我们证明了所有非晶阴极电致变色氧化物的电致变色可以用极化子和双极化子跳变的组合来描述。基于金属组分的价,我们利用极化子理论建立了实验光学吸收光谱模型,并将两个显著的吸收峰分配给极化子和双极化子电荷转移激发。然而,在V2O5的特殊情况下,需要三个峰来拟合光谱。所有阴极氧化物的极极性和双极极性跳跃的活化能都非常相似。在极化子吸收的框架内,V2O5将被归类为阴极氧化物,而不是传统图像中的混合阳极/阴极材料。我们强调,我们的发现不仅提供了对所有非晶阴极电致变色氧化物的深刻理解,而且为探索双波段调制的电致变色氧化物铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信