Xiang Luo, Zhenyang Shua, Diguang Zhao, Beibei Liu, Hua Luo, Ying Chen, Dong Meng, Zhihua Song, Qing Yang, Zicheng Wang, Dong Tang, Xingguo Zhang, Juan Zhang, Kai Ma, Wen Yao
{"title":"Genome assembly of pomegranate highlights structural variations driving population differentiation and key loci underpinning cold adaption","authors":"Xiang Luo, Zhenyang Shua, Diguang Zhao, Beibei Liu, Hua Luo, Ying Chen, Dong Meng, Zhihua Song, Qing Yang, Zicheng Wang, Dong Tang, Xingguo Zhang, Juan Zhang, Kai Ma, Wen Yao","doi":"10.1093/hr/uhaf022","DOIUrl":null,"url":null,"abstract":"Cold damage poses a significant challenge to the cultivation of soft-seeded pomegranate varieties, hindering the growth of the pomegranate industry. The genetic basis of cold tolerance in pomegranates has remained elusive, largely due to the lack of high-quality genome assemblies for cold-tolerant varieties and comprehensive population-scale genomic studies. In this study, we addressed these challenges by assembling a high-quality chromosome-level reference genome for 'Sanbai', a pomegranate variety renowned for its freezing resistance, achieving an impressive contig N50 of 15.93 Mb. This robust assembly, enhanced by long-read sequencing of 38 pomegranate accessions, facilitated the identification of 14,239 polymorphic structural variants, revealing their critical roles in genomic diversity and population differentiation related to cold tolerance. Of particular significance was the discovery of a ~5.4-Mb inversion on chromosome 1, which emerged as an important factor affecting cold tolerance in pomegranate. Moreover, through the integration of bulked segregant analysis, differential selection analysis, and genetic transformation techniques, we identified and validated the interaction between the PgNAC12 transcription factor and PgCBF1, disclosing their pivotal roles in response to cold stress. These findings mark a significant advancement in pomegranate genomics, offering novel insights into the genetic mechanisms of cold tolerance and providing valuable resources for the genetic improvement of soft-seeded pomegranate varieties.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"14 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf022","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Cold damage poses a significant challenge to the cultivation of soft-seeded pomegranate varieties, hindering the growth of the pomegranate industry. The genetic basis of cold tolerance in pomegranates has remained elusive, largely due to the lack of high-quality genome assemblies for cold-tolerant varieties and comprehensive population-scale genomic studies. In this study, we addressed these challenges by assembling a high-quality chromosome-level reference genome for 'Sanbai', a pomegranate variety renowned for its freezing resistance, achieving an impressive contig N50 of 15.93 Mb. This robust assembly, enhanced by long-read sequencing of 38 pomegranate accessions, facilitated the identification of 14,239 polymorphic structural variants, revealing their critical roles in genomic diversity and population differentiation related to cold tolerance. Of particular significance was the discovery of a ~5.4-Mb inversion on chromosome 1, which emerged as an important factor affecting cold tolerance in pomegranate. Moreover, through the integration of bulked segregant analysis, differential selection analysis, and genetic transformation techniques, we identified and validated the interaction between the PgNAC12 transcription factor and PgCBF1, disclosing their pivotal roles in response to cold stress. These findings mark a significant advancement in pomegranate genomics, offering novel insights into the genetic mechanisms of cold tolerance and providing valuable resources for the genetic improvement of soft-seeded pomegranate varieties.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.