{"title":"Advanced optical reinforcement materials based on three-dimensional four-way weaving structure and metasurface technology","authors":"Wenxin Li, Shubo Cheng, Zao Yi, Huafeng Zhang, Qianju Song, Zhiqiang Hao, Tangyou Sun, Pinghui Wu, Qingdong Zeng, Rizwan Raza","doi":"10.1063/5.0232542","DOIUrl":null,"url":null,"abstract":"By integrating the design principles of broadband metamaterial absorbers with woven structures, this study introduces a woven composite metamaterial (WCM) made of resin and AlCuFe quasicrystals, enabling optical materials to operate efficiently across a wide spectral range while withstanding mechanical deformation. This lightweight metamaterial features a unique 3D four-way braided structure combined with Dirac semimetals. Static analysis reveals that AlCuFe quasicrystals significantly enhance mechanical properties, with a Young's modulus reaching 38 GPa in the z direction and 18 GPa in the x and y directions at 40% fiber content and a 30° weaving angle. Frequency domain simulations show a high average absorption rate of 83.4% in the 3–12 μm range, primarily due to internal electromagnetic coupling. The study further reveals that the electromagnetic properties of the WCM are closely related to fiber content and weaving angle. As a lightweight optical material, the WCM shows strong application potential in fields such as aerospace and electromagnetic countermeasures.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"74 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0232542","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
By integrating the design principles of broadband metamaterial absorbers with woven structures, this study introduces a woven composite metamaterial (WCM) made of resin and AlCuFe quasicrystals, enabling optical materials to operate efficiently across a wide spectral range while withstanding mechanical deformation. This lightweight metamaterial features a unique 3D four-way braided structure combined with Dirac semimetals. Static analysis reveals that AlCuFe quasicrystals significantly enhance mechanical properties, with a Young's modulus reaching 38 GPa in the z direction and 18 GPa in the x and y directions at 40% fiber content and a 30° weaving angle. Frequency domain simulations show a high average absorption rate of 83.4% in the 3–12 μm range, primarily due to internal electromagnetic coupling. The study further reveals that the electromagnetic properties of the WCM are closely related to fiber content and weaving angle. As a lightweight optical material, the WCM shows strong application potential in fields such as aerospace and electromagnetic countermeasures.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.