Haihua Wang, Kaile Zhang, Ryan Tappero, Tiffany W. Victor, Jennifer M. Bhatnagar, Rytas Vilgalys, Hui-Ling Liao
{"title":"Inorganic nitrogen and organic matter jointly regulate ectomycorrhizal fungi-mediated iron acquisition","authors":"Haihua Wang, Kaile Zhang, Ryan Tappero, Tiffany W. Victor, Jennifer M. Bhatnagar, Rytas Vilgalys, Hui-Ling Liao","doi":"10.1111/nph.20394","DOIUrl":null,"url":null,"abstract":"<p>\n</p><ul>\n<li>Ectomycorrhizal fungi (EMF) play a crucial role in facilitating plant nutrient uptake from the soil although inorganic nitrogen (N) can potentially diminish this role. However, the effect of inorganic N availability and organic matter on shaping EMF-mediated plant iron (Fe) uptake remains unclear.</li>\n<li>To explore this, we performed a microcosm study on <i>Pinus taeda</i> roots inoculated with <i>Suillus cothurnatus</i> treated with +/−Fe-coated sand, +/−organic matter, and a gradient of NH<sub>4</sub>NO<sub>3</sub> concentrations.</li>\n<li>Mycorrhiza formation was most favorable under conditions with organic matter, without inorganic N. Synchrotron X-ray microfluorescence imaging on ectomycorrhizal cross-sections suggested that the effect of inorganic N on mycorrhizal Fe acquisition largely depended on organic matter supply. With organic matter, mycorrhizal Fe concentration was significantly decreased as inorganic N levels increased. Conversely, an opposite trend was observed when organic matter was absent. Spatial distribution analysis showed that Fe, zinc, calcium, and copper predominantly accumulated in the fungal mantle across all conditions, highlighting the mantle's critical role in nutrient accumulation and regulation of nutrient transfer to internal compartments.</li>\n<li>Our work illustrated that the liberation of soil mineral Fe and the EMF-mediated plant Fe acquisition are jointly regulated by inorganic N and organic matter in the soil.</li>\n</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"11 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20394","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ectomycorrhizal fungi (EMF) play a crucial role in facilitating plant nutrient uptake from the soil although inorganic nitrogen (N) can potentially diminish this role. However, the effect of inorganic N availability and organic matter on shaping EMF-mediated plant iron (Fe) uptake remains unclear.
To explore this, we performed a microcosm study on Pinus taeda roots inoculated with Suillus cothurnatus treated with +/−Fe-coated sand, +/−organic matter, and a gradient of NH4NO3 concentrations.
Mycorrhiza formation was most favorable under conditions with organic matter, without inorganic N. Synchrotron X-ray microfluorescence imaging on ectomycorrhizal cross-sections suggested that the effect of inorganic N on mycorrhizal Fe acquisition largely depended on organic matter supply. With organic matter, mycorrhizal Fe concentration was significantly decreased as inorganic N levels increased. Conversely, an opposite trend was observed when organic matter was absent. Spatial distribution analysis showed that Fe, zinc, calcium, and copper predominantly accumulated in the fungal mantle across all conditions, highlighting the mantle's critical role in nutrient accumulation and regulation of nutrient transfer to internal compartments.
Our work illustrated that the liberation of soil mineral Fe and the EMF-mediated plant Fe acquisition are jointly regulated by inorganic N and organic matter in the soil.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.