Haohao Wu, Congsheng Fu, Kailiang Yu, Philippe Ciais, Ashley Ballantyne, Zhihua Liu, Brendan M. Rogers, Shilong Piao, Yizhao Chen, Lingling Zhang, Huawu Wu, Xingwang Fan, Jianyao Chen, Guishan Yang
{"title":"Drought-Induced Weakening of Temperature Control on Ecosystem Carbon Uptake Across Northern Lands","authors":"Haohao Wu, Congsheng Fu, Kailiang Yu, Philippe Ciais, Ashley Ballantyne, Zhihua Liu, Brendan M. Rogers, Shilong Piao, Yizhao Chen, Lingling Zhang, Huawu Wu, Xingwang Fan, Jianyao Chen, Guishan Yang","doi":"10.1111/gcb.70032","DOIUrl":null,"url":null,"abstract":"Rapid warming in northern lands has led to increased ecosystem carbon uptake. It remains unclear, however, whether and how the beneficial effects of warming on carbon uptake will continue with climate change. Moreover, the role played by water stress in temperature control on ecosystem carbon uptake remains highly uncertain. Here, we systematically explored the trend in the temperature control on gross primary production (measured by “<i>S</i><sub>GPP-TAS</sub>”) across northern lands (> 15°N) using a standardized multiple regression approach by controlling other covarying factors. We estimated <i>S</i><sub>GPP-TAS</sub> using three types of GPP datasets: four satellite-derived GPP datasets, FLUXNET tower observed GPP datasets, and GPP outputs from nine CMIP6 models. Our analysis revealed a significant positive-to-negative transition around the year 2000 in the trend of <i>S</i><sub>GPP-TAS</sub>. This transition was primarily driven by synchronized changes in soil water content over time and space. The <i>S</i><sub>GPP-TAS</sub> trend transition covered about 32% of northern lands, especially in grasslands and coniferous forests where leaf water mediation and structural overshoot accelerated the drought-induced transition, respectively. In the future, widespread negative <i>S</i><sub>GPP-TAS</sub> trends are projected in northern lands corresponding with decreasing soil water availability. These findings highlight the shrinking temperature control on northern land carbon uptake in a warmer and drier climate.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"1 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/gcb.70032","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid warming in northern lands has led to increased ecosystem carbon uptake. It remains unclear, however, whether and how the beneficial effects of warming on carbon uptake will continue with climate change. Moreover, the role played by water stress in temperature control on ecosystem carbon uptake remains highly uncertain. Here, we systematically explored the trend in the temperature control on gross primary production (measured by “SGPP-TAS”) across northern lands (> 15°N) using a standardized multiple regression approach by controlling other covarying factors. We estimated SGPP-TAS using three types of GPP datasets: four satellite-derived GPP datasets, FLUXNET tower observed GPP datasets, and GPP outputs from nine CMIP6 models. Our analysis revealed a significant positive-to-negative transition around the year 2000 in the trend of SGPP-TAS. This transition was primarily driven by synchronized changes in soil water content over time and space. The SGPP-TAS trend transition covered about 32% of northern lands, especially in grasslands and coniferous forests where leaf water mediation and structural overshoot accelerated the drought-induced transition, respectively. In the future, widespread negative SGPP-TAS trends are projected in northern lands corresponding with decreasing soil water availability. These findings highlight the shrinking temperature control on northern land carbon uptake in a warmer and drier climate.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.