Rongli Deng, Haibin Lin, Qichuan Hu, Dan Wang, Bo Wu, Richard Nötzel
{"title":"From localization to quantum-dot chains in self-formed core–shell InGaN nanowires emitting in the red","authors":"Rongli Deng, Haibin Lin, Qichuan Hu, Dan Wang, Bo Wu, Richard Nötzel","doi":"10.1063/5.0252308","DOIUrl":null,"url":null,"abstract":"Self-formed core–shell InGaN nanowires (NWs) grown by plasma-assisted molecular beam epitaxy on p-Si (111) are studied by temperature-dependent and time-resolved photoluminescence (PL) spectroscopy. Clear localization and associated photocarrier redistribution can be evidenced by the S-shape temperature dependence of the PL peak energy and inflection of the PL linewidth. An unexpected maximum of the integrated PL intensity as a function of temperature is observed. This maximum is identified as proof that the localized states behave as chains of quantum dots with reduced radiative lifetime due to the combination of strong two-dimensional lateral quantum confinement in the NW core with localization. This is underlined by the time-resolved PL measurements exhibiting a fast, sub-ns, single-exponential decay, in addition evidencing negligible quantum-confined Stark effect for efficient light sources emitting in the red.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"11 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0252308","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Self-formed core–shell InGaN nanowires (NWs) grown by plasma-assisted molecular beam epitaxy on p-Si (111) are studied by temperature-dependent and time-resolved photoluminescence (PL) spectroscopy. Clear localization and associated photocarrier redistribution can be evidenced by the S-shape temperature dependence of the PL peak energy and inflection of the PL linewidth. An unexpected maximum of the integrated PL intensity as a function of temperature is observed. This maximum is identified as proof that the localized states behave as chains of quantum dots with reduced radiative lifetime due to the combination of strong two-dimensional lateral quantum confinement in the NW core with localization. This is underlined by the time-resolved PL measurements exhibiting a fast, sub-ns, single-exponential decay, in addition evidencing negligible quantum-confined Stark effect for efficient light sources emitting in the red.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.