Yujie Tan, Minghui Sun, Shi Zhou, Mifan Wang, Fuqiang Huo, Bin Su, Bo Liu, Wei Jiang, Chunbo Liu
{"title":"Self-assembled metalloporphyrin-carbon nitride heterointerface promotes fenton-like activity to purify high-salinity phenolic wastewater","authors":"Yujie Tan, Minghui Sun, Shi Zhou, Mifan Wang, Fuqiang Huo, Bin Su, Bo Liu, Wei Jiang, Chunbo Liu","doi":"10.1016/j.seppur.2025.131739","DOIUrl":null,"url":null,"abstract":"Developing a Fenton-like peroxymonosulfate (PMS) activator capable of producing <sup>1</sup>O<sub>2</sub> is beneficial for treating high-salinity wastewater. Herein, the FeTCPP-CN catalyst was synthesized by self-assembling iron (Ⅲ) tetrakis(4-carboxyphenyl)porphyrin (FeTCPP) molecule with lamellar carbon nitride (CN) polymer. The formed hydrophilic-hydrophobic heterointerface enhanced the adsorption potential with pollutants, and the hydrogen bonding and π-π interactions between interfaces constructed an efficient electron transfer channel, while the highly dispersed Fe-N<sub>4</sub> moiety promoted atomic utilization efficiency. In the FeTCPP-CN/PMS system, 2,4-dichlorophenol (2,4-DCP) could be efficiently degraded under high concentration (200 mM) of inorganic salts, and the excellent degradation performance could be maintained over 10 cycles in a continuous flow device. During the reaction, the O<sub>2</sub><strong><sup>·</sup></strong><sup>-</sup> and <sup>1</sup>O<sub>2</sub> were identified as the main active species, where *SO<sub>5</sub><strong><sup>·</sup></strong><sup>-</sup> was the crucial intermediate to selectively generate <sup>1</sup>O<sub>2</sub>. This work offers insights into the construction of efficient catalysts for the treatment of high-salinity phenolic wastewater.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"14 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.131739","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing a Fenton-like peroxymonosulfate (PMS) activator capable of producing 1O2 is beneficial for treating high-salinity wastewater. Herein, the FeTCPP-CN catalyst was synthesized by self-assembling iron (Ⅲ) tetrakis(4-carboxyphenyl)porphyrin (FeTCPP) molecule with lamellar carbon nitride (CN) polymer. The formed hydrophilic-hydrophobic heterointerface enhanced the adsorption potential with pollutants, and the hydrogen bonding and π-π interactions between interfaces constructed an efficient electron transfer channel, while the highly dispersed Fe-N4 moiety promoted atomic utilization efficiency. In the FeTCPP-CN/PMS system, 2,4-dichlorophenol (2,4-DCP) could be efficiently degraded under high concentration (200 mM) of inorganic salts, and the excellent degradation performance could be maintained over 10 cycles in a continuous flow device. During the reaction, the O2·- and 1O2 were identified as the main active species, where *SO5·- was the crucial intermediate to selectively generate 1O2. This work offers insights into the construction of efficient catalysts for the treatment of high-salinity phenolic wastewater.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.