Dynamic photosynthetic labeling and carbon-positional mass spectrometry monitor in vivo Rubisco carbon assimilation rates.

IF 6.5 1区 生物学 Q1 PLANT SCIENCES
Yogeswari Rajarathinam,Luisa Wittemeier,Kirstin Gutekunst,Martin Hagemann,Joachim Kopka
{"title":"Dynamic photosynthetic labeling and carbon-positional mass spectrometry monitor in vivo Rubisco carbon assimilation rates.","authors":"Yogeswari Rajarathinam,Luisa Wittemeier,Kirstin Gutekunst,Martin Hagemann,Joachim Kopka","doi":"10.1093/plphys/kiaf020","DOIUrl":null,"url":null,"abstract":"RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (RUBISCO) is the most abundant enzyme and CO2 bio-sequestration system on Earth. Its in vivo activity is usually determined by 14CO2 incorporation into 3-phosphoglycerate (3PGA). However, the radiometric analysis of 3PGA does not distinguish carbon positions. Hence, RUBISCO activity that fixes carbon into the 1-C position of 3PGA and Calvin-Benson-Bassham (CBB) cycle activities that redistribute carbon into its 2-C and 3-C positions are not resolved. This study aims to develop technology that differentiates between these activities. In source fragmentation of gas chromatography-mass spectrometry (GC-MS) enables paired isotopologue distribution analyses of fragmented substructures and the complete metabolite structure. GC-MS measurements after dynamic photosynthetic 13CO2 labelling allowed quantification of the 13C fractional enrichment (E13C) and molar carbon assimilation rates (A13C) at carbon position 1-C of 3PGA by combining E13C from carbon positions 2,3-C2 and 1,2,3-C3 with quantification of 3PGA concentrations. We validated the procedure using two GC-time of flight (TOF)-MS instruments, operated at nominal or high mass resolution, and tested the expected 3PGA positional labelling by in vivo glycolysis of positional labelled glucose isotopomers. Mutant analysis of the highly divergent GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASEs (GAPDH1 and 2) from Synechocystis sp. PCC 6803 revealed full inactivation of the CBB cycle with maintained RUBISCO activity in Δgapdh2 and a CBB cycle modulating role of GAPDH1 under fluctuating CO2 supply. RUBISCO activity in the CBB-deficient Δgapdh2 can re-assimilate CO2 released by catabolic pathways. We suggest that RUBISCO activity in Synechocystis can scavenge carbon lost through the pentose phosphate pathway or other cellular decarboxylation reactions.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"6 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf020","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (RUBISCO) is the most abundant enzyme and CO2 bio-sequestration system on Earth. Its in vivo activity is usually determined by 14CO2 incorporation into 3-phosphoglycerate (3PGA). However, the radiometric analysis of 3PGA does not distinguish carbon positions. Hence, RUBISCO activity that fixes carbon into the 1-C position of 3PGA and Calvin-Benson-Bassham (CBB) cycle activities that redistribute carbon into its 2-C and 3-C positions are not resolved. This study aims to develop technology that differentiates between these activities. In source fragmentation of gas chromatography-mass spectrometry (GC-MS) enables paired isotopologue distribution analyses of fragmented substructures and the complete metabolite structure. GC-MS measurements after dynamic photosynthetic 13CO2 labelling allowed quantification of the 13C fractional enrichment (E13C) and molar carbon assimilation rates (A13C) at carbon position 1-C of 3PGA by combining E13C from carbon positions 2,3-C2 and 1,2,3-C3 with quantification of 3PGA concentrations. We validated the procedure using two GC-time of flight (TOF)-MS instruments, operated at nominal or high mass resolution, and tested the expected 3PGA positional labelling by in vivo glycolysis of positional labelled glucose isotopomers. Mutant analysis of the highly divergent GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASEs (GAPDH1 and 2) from Synechocystis sp. PCC 6803 revealed full inactivation of the CBB cycle with maintained RUBISCO activity in Δgapdh2 and a CBB cycle modulating role of GAPDH1 under fluctuating CO2 supply. RUBISCO activity in the CBB-deficient Δgapdh2 can re-assimilate CO2 released by catabolic pathways. We suggest that RUBISCO activity in Synechocystis can scavenge carbon lost through the pentose phosphate pathway or other cellular decarboxylation reactions.
动态光合标记和碳定位质谱监测体内Rubisco碳同化率。
核酮糖-1,5-二磷酸羧化酶/加氧酶(RUBISCO)是地球上最丰富的酶和二氧化碳生物隔离系统。其体内活性通常由14CO2掺入3-磷酸甘油酸(3PGA)来确定。然而,3PGA的辐射分析不能区分碳的位置。因此,将碳固定到3PGA的1-C位置的RUBISCO活性和将碳重新分配到2-C和3-C位置的Calvin-Benson-Bassham (CBB)循环活性没有得到解决。本研究旨在开发区分这些活动的技术。气相色谱-质谱联用(GC-MS)可以对碎片亚结构和完整代谢物结构进行配对同位素分布分析。动态光合13CO2标记后的GC-MS测量通过将碳位2,3- c2和1,2,3- c3的E13C与3PGA浓度的定量结合,可以定量3PGA碳位1- c处的13C分数富集(E13C)和摩尔碳同化率(A13C)。我们使用两台GC-time of flight (TOF)-MS仪器验证了该方法,在标称或高质量分辨率下操作,并通过体内糖酵解位置标记的葡萄糖同位素体测试了预期的3PGA位置标记。对Synechocystis sp. PCC 6803中高度分化的甘油醛-3-磷酸脱氢酶(GAPDH1和2)的突变体分析显示,在Δgapdh2中,GAPDH1在CBB循环中完全失活,而RUBISCO活性保持不变,并且GAPDH1在波动的CO2供应下调节CBB循环。RUBISCO活性在cbb缺乏Δgapdh2可以重新吸收二氧化碳释放的分解代谢途径。我们认为,胞囊藻的RUBISCO活性可以清除通过戊糖磷酸途径或其他细胞脱羧反应损失的碳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信