{"title":"ExerGeneDB: A physical exercise-regulated differential gene expression database.","authors":"Ling Pan,Songwei Ai,Xiaohui Shi,Xiaolan Tong,Michail Spanos,Guoping Li,Dragos Cretoiu,Juan Gao,Qiulian Zhou,Junjie Xiao","doi":"10.1016/j.jshs.2025.101027","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nExercise induces molecular changes that involve multiple organs and tissues. Moreover, these changes are modulated by various exercise parameters-such as intensity, frequency, mode, and duration-as well as by clinical features like gender, age, and body mass index (BMI), each eliciting distinct biological effects. To assist exercise researchers in understanding these changes from a comprehensive perspective that includes multiple organs, diverse exercise regimens, and a range of clinical features, we developed Exercise Regulated Genes Database (ExerGeneDB), a database of exercise-regulated differential genes.\r\n\r\nMETHODS\r\nExerGeneDB aggregated publicly available exercise-related sequencing datasets and subjected them to uniform quality control and preprocessing. The data, encompassing a variety of types, were organized into a specialized database of exercise-regulated genes. Notably, ExerGeneDB conducted differential analyses on this collected data, leveraging curated clinical information and accounting for important factors such as gender, age, and BMI.\r\n\r\nRESULTS\r\nExerGeneDB has assembled 1692 samples from rats and mice as well as 4492 human samples. It contains data from various tissues and organs, such as skeletal muscle, blood, adipose tissue, intestine, heart, liver, spleen, lungs, kidneys, brain, spinal cord, bone marrow, and bones. ExerGeneDB features bulk Ribonucleic acid sequencing (RNA-seq) (including non-coding RNA (ncRNA) and protein-coding RNA), microarray (including ncRNA and protein-coding RNA), and single cell RNA-seq data.\r\n\r\nCONCLUSION\r\nExerGeneDB compiles and re-analyzes exercise-related data with a focus on clinical information. This has culminated in the creation of an interactive database for exercise regulation genes. The website for ExerGeneDB can be found at: https://exergenedb.com.","PeriodicalId":48897,"journal":{"name":"Journal of Sport and Health Science","volume":"18 1","pages":"101027"},"PeriodicalIF":9.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sport and Health Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jshs.2025.101027","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND
Exercise induces molecular changes that involve multiple organs and tissues. Moreover, these changes are modulated by various exercise parameters-such as intensity, frequency, mode, and duration-as well as by clinical features like gender, age, and body mass index (BMI), each eliciting distinct biological effects. To assist exercise researchers in understanding these changes from a comprehensive perspective that includes multiple organs, diverse exercise regimens, and a range of clinical features, we developed Exercise Regulated Genes Database (ExerGeneDB), a database of exercise-regulated differential genes.
METHODS
ExerGeneDB aggregated publicly available exercise-related sequencing datasets and subjected them to uniform quality control and preprocessing. The data, encompassing a variety of types, were organized into a specialized database of exercise-regulated genes. Notably, ExerGeneDB conducted differential analyses on this collected data, leveraging curated clinical information and accounting for important factors such as gender, age, and BMI.
RESULTS
ExerGeneDB has assembled 1692 samples from rats and mice as well as 4492 human samples. It contains data from various tissues and organs, such as skeletal muscle, blood, adipose tissue, intestine, heart, liver, spleen, lungs, kidneys, brain, spinal cord, bone marrow, and bones. ExerGeneDB features bulk Ribonucleic acid sequencing (RNA-seq) (including non-coding RNA (ncRNA) and protein-coding RNA), microarray (including ncRNA and protein-coding RNA), and single cell RNA-seq data.
CONCLUSION
ExerGeneDB compiles and re-analyzes exercise-related data with a focus on clinical information. This has culminated in the creation of an interactive database for exercise regulation genes. The website for ExerGeneDB can be found at: https://exergenedb.com.
期刊介绍:
The Journal of Sport and Health Science (JSHS) is an international, multidisciplinary journal that aims to advance the fields of sport, exercise, physical activity, and health sciences. Published by Elsevier B.V. on behalf of Shanghai University of Sport, JSHS is dedicated to promoting original and impactful research, as well as topical reviews, editorials, opinions, and commentary papers.
With a focus on physical and mental health, injury and disease prevention, traditional Chinese exercise, and human performance, JSHS offers a platform for scholars and researchers to share their findings and contribute to the advancement of these fields. Our journal is peer-reviewed, ensuring that all published works meet the highest academic standards.
Supported by a carefully selected international editorial board, JSHS upholds impeccable integrity and provides an efficient publication platform. We invite submissions from scholars and researchers worldwide, and we are committed to disseminating insightful and influential research in the field of sport and health science.