Physics-Guided Deep Learning Model for Daily Groundwater Table Maps Estimation Using Passive Surface-Wave Dispersion

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
José Cunha Teixeira, Ludovic Bodet, Agnès Rivière, Amélie Hallier, Alexandrine Gesret, Marine Dangeard, Amine Dhemaied, Joséphine Boisson Gaboriau
{"title":"Physics-Guided Deep Learning Model for Daily Groundwater Table Maps Estimation Using Passive Surface-Wave Dispersion","authors":"José Cunha Teixeira, Ludovic Bodet, Agnès Rivière, Amélie Hallier, Alexandrine Gesret, Marine Dangeard, Amine Dhemaied, Joséphine Boisson Gaboriau","doi":"10.1029/2024wr037706","DOIUrl":null,"url":null,"abstract":"Monitoring groundwater tables (GWTs) remains challenging due to limited spatial and temporal observations. This study introduces an innovative approach combining an artificial neural network, specifically a multilayer perceptron (MLP), with continuous passive Multichannel Analysis of Surface Waves (passive-MASW) to construct GWT depth maps. The geologically well-constrained study site includes two piezometers and a permanent 2D geophone array recording train-induced surface waves. At each point of the array, dispersion curves (DCs), displaying Rayleigh-wave phase velocities <span data-altimg=\"/cms/asset/f0d9b693-7331-4aa5-a654-78f5ac9fba29/wrcr27656-math-0001.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27656:wrcr27656-math-0001\" display=\"inline\" location=\"graphic/wrcr27656-math-0001.png\">\n<semantics>\n<mrow>\n<mfenced close=\")\" open=\"(\" separators=\"\">\n<msub>\n<mi>V</mi>\n<mi>R</mi>\n</msub>\n</mfenced>\n</mrow>\n$\\left({V}_{R}\\right)$</annotation>\n</semantics></math> over a frequency range of 5–50 Hz, were measured daily from December 2022 to September 2023, and latter resampled over wavelengths from 4 to 15 m, to focus on the expected GWT depths (1–5 m). Nine months of daily <span data-altimg=\"/cms/asset/0f52fe16-966b-40c5-b835-263b40d7b16f/wrcr27656-math-0002.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27656:wrcr27656-math-0002\" display=\"inline\" location=\"graphic/wrcr27656-math-0002.png\">\n<semantics>\n<mrow>\n<msub>\n<mi>V</mi>\n<mi>R</mi>\n</msub>\n</mrow>\n${V}_{R}$</annotation>\n</semantics></math> data near one piezometer, spanning both low and high water periods, were used to train the MLP model. GWT depths were then estimated across the geophone array, producing daily GWT maps. The model's performance was evaluated by comparing inferred GWT depths with observed measurements at the second piezometer. Results show a coefficient of determination (R<sup>2</sup>) of 80% at the training piezometer and of 68% at the test piezometer, and a remarkably low root-mean-square error (RMSE) of 0.03 m at both locations. These findings highlight the potential of deep learning to estimate GWT maps from seismic data with spatially limited piezometric information, offering a practical and efficient solution for monitoring groundwater dynamics across large spatial extents.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"18 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr037706","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring groundwater tables (GWTs) remains challenging due to limited spatial and temporal observations. This study introduces an innovative approach combining an artificial neural network, specifically a multilayer perceptron (MLP), with continuous passive Multichannel Analysis of Surface Waves (passive-MASW) to construct GWT depth maps. The geologically well-constrained study site includes two piezometers and a permanent 2D geophone array recording train-induced surface waves. At each point of the array, dispersion curves (DCs), displaying Rayleigh-wave phase velocities V R $\left({V}_{R}\right)$ over a frequency range of 5–50 Hz, were measured daily from December 2022 to September 2023, and latter resampled over wavelengths from 4 to 15 m, to focus on the expected GWT depths (1–5 m). Nine months of daily V R ${V}_{R}$ data near one piezometer, spanning both low and high water periods, were used to train the MLP model. GWT depths were then estimated across the geophone array, producing daily GWT maps. The model's performance was evaluated by comparing inferred GWT depths with observed measurements at the second piezometer. Results show a coefficient of determination (R2) of 80% at the training piezometer and of 68% at the test piezometer, and a remarkably low root-mean-square error (RMSE) of 0.03 m at both locations. These findings highlight the potential of deep learning to estimate GWT maps from seismic data with spatially limited piezometric information, offering a practical and efficient solution for monitoring groundwater dynamics across large spatial extents.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信