The Wigner Little Group for Photons is a Projective Subalgebra

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
Moab Croft, Hamish Todd, Edward Corbett
{"title":"The Wigner Little Group for Photons is a Projective Subalgebra","authors":"Moab Croft,&nbsp;Hamish Todd,&nbsp;Edward Corbett","doi":"10.1007/s00006-025-01369-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the Geometric Algebra approach to the Wigner little group for photons using the Spacetime Algebra, incorporating a mirror-based view for physical interpretation. The shift from a <i>point-based view</i> to a <i>mirror-based view</i> is a modern movement that allows for a more intuitive representation of geometric and physical entities, with vectors and their higher-grade counterparts viewed as hyperplanes. This reinterpretation simplifies the implementation of homogeneous representations of geometric objects within the Spacetime Algebra and enables a <i>relative view</i> via projective geometry. Then, after utilizing the intrinsic properties of Geometric Algebra, the Wigner little group is seen to induce a projective geometric algebra as a subalgebra of the Spacetime Algebra. However, the dimension-agnostic nature of Geometric Algebra enables the generalization of induced subalgebras to <span>\\((1+n)\\)</span>-dimensional Minkowski geometric algebras, termed <i>little photon algebras</i>. The lightlike transformations (translations) in these little photon algebras are seen to leave invariant the (pseudo)<i>canonical electromagetic field bivector</i>. Geometrically, this corresponds to Lorentz transformations that do not change the intersection of the spacelike polarization hyperplane with the lightlike wavevector hyperplane while simultaneously not affecting the lightlike wavevector hyperplane. This provides for a framework that unifies the analysis of symmetries and substructures of point-based Geometric Algebra with mirror-based Geometric Algebra.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01369-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the Geometric Algebra approach to the Wigner little group for photons using the Spacetime Algebra, incorporating a mirror-based view for physical interpretation. The shift from a point-based view to a mirror-based view is a modern movement that allows for a more intuitive representation of geometric and physical entities, with vectors and their higher-grade counterparts viewed as hyperplanes. This reinterpretation simplifies the implementation of homogeneous representations of geometric objects within the Spacetime Algebra and enables a relative view via projective geometry. Then, after utilizing the intrinsic properties of Geometric Algebra, the Wigner little group is seen to induce a projective geometric algebra as a subalgebra of the Spacetime Algebra. However, the dimension-agnostic nature of Geometric Algebra enables the generalization of induced subalgebras to \((1+n)\)-dimensional Minkowski geometric algebras, termed little photon algebras. The lightlike transformations (translations) in these little photon algebras are seen to leave invariant the (pseudo)canonical electromagetic field bivector. Geometrically, this corresponds to Lorentz transformations that do not change the intersection of the spacelike polarization hyperplane with the lightlike wavevector hyperplane while simultaneously not affecting the lightlike wavevector hyperplane. This provides for a framework that unifies the analysis of symmetries and substructures of point-based Geometric Algebra with mirror-based Geometric Algebra.

Abstract Image

光子的Wigner小群是一个射影子代数
本文介绍了利用时空代数对光子维格纳小群的几何代数方法,并结合了基于镜像的物理解释观点。从基于点的视图到基于镜像的视图的转变是一种现代运动,它允许更直观地表示几何和物理实体,将向量及其高级对应物视为超平面。这种重新解释简化了时空代数中几何对象的同构表示的实现,并通过射影几何实现了相对视图。然后,利用几何代数的固有性质,利用Wigner小群推导出一个射影几何代数作为时空代数的子代数。然而,几何代数的维数不可知特性使得诱导子代数能够推广到\((1+n)\) -维闵可夫斯基几何代数,称为小光子代数。这些小光子代数中的类光变换(平移)使(伪)规范电磁场双向量保持不变。从几何上讲,这对应于洛伦兹变换,它不改变类空间偏振超平面与类光波矢量超平面的交点,同时不影响类光波矢量超平面。这提供了一个统一点几何代数和镜像几何代数的对称和子结构分析的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信