Converting Fe–N–C single-atom catalyst to a new FeNxSey cluster catalyst for proton-exchange membrane fuel cells

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yang Zhao, Pengfei Yin, Yuanyuan Yang, Ruguang Wang, Cairong Gong, Jisi Li, Jiaxin Guo, Quanlu Wang, Tao Ling
{"title":"Converting Fe–N–C single-atom catalyst to a new FeNxSey cluster catalyst for proton-exchange membrane fuel cells","authors":"Yang Zhao, Pengfei Yin, Yuanyuan Yang, Ruguang Wang, Cairong Gong, Jisi Li, Jiaxin Guo, Quanlu Wang, Tao Ling","doi":"10.1002/anie.202419501","DOIUrl":null,"url":null,"abstract":"Fe–N–C catalyst is the most promising alternative to platinum catalyst for proton-exchange membrane fuel cells (PEMFCs), however its high performance cannot be maintained for a long enough time in device. The construction of a new Fe coordination environment that is different from the square-planar Fe–N 4 configuration in Fe–N–C catalyst is expected to break current stability limits, which however remains unexplored. Here, we report the conversion of Fe–N–C to a new FeNxSey catalyst, where the Fe sites are three-dimensionally (3D) co-coordinated by N and Se atoms. The FeNxSey catalyst exhibits much better 4e– ORR activity and selectivity than the Fe–N–C catalyst. Specifically, the yields of H2O2 and ·OH radicals on FeNxSey are only one-quarter and one-third of that on Fe–N–C, respectively. Therefore, the FeNxSey catalyst exhibits outstanding stability, losing only 10 mV in E1/2 after 10,000 cycles, much smaller than that of the Fe–N–C catalyst (56 mV), representing the most stable Pt-free catalysts ever reported. Moreover, the 3D co-coordination structure inhibits the Fe demetallization in the presence of H2O2. As a result, the FeNxSey based PEMFC shows excellent durability, with the current density attenuation significantly lower than that of the Fe–N–C based device after accelerated durability testing.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"57 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202419501","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fe–N–C catalyst is the most promising alternative to platinum catalyst for proton-exchange membrane fuel cells (PEMFCs), however its high performance cannot be maintained for a long enough time in device. The construction of a new Fe coordination environment that is different from the square-planar Fe–N 4 configuration in Fe–N–C catalyst is expected to break current stability limits, which however remains unexplored. Here, we report the conversion of Fe–N–C to a new FeNxSey catalyst, where the Fe sites are three-dimensionally (3D) co-coordinated by N and Se atoms. The FeNxSey catalyst exhibits much better 4e– ORR activity and selectivity than the Fe–N–C catalyst. Specifically, the yields of H2O2 and ·OH radicals on FeNxSey are only one-quarter and one-third of that on Fe–N–C, respectively. Therefore, the FeNxSey catalyst exhibits outstanding stability, losing only 10 mV in E1/2 after 10,000 cycles, much smaller than that of the Fe–N–C catalyst (56 mV), representing the most stable Pt-free catalysts ever reported. Moreover, the 3D co-coordination structure inhibits the Fe demetallization in the presence of H2O2. As a result, the FeNxSey based PEMFC shows excellent durability, with the current density attenuation significantly lower than that of the Fe–N–C based device after accelerated durability testing.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信