Cotton production areas are at high risk of invasion by Amrasca biguttula (Ishida) (Cicadellidae: Hemiptera): potential distribution under climate change

IF 3.8 1区 农林科学 Q1 AGRONOMY
Abdelmutalab AG Azrag, Saliou Niassy, Adin Y Bloukounon-Goubalan, Elfatih M Abdel-Rahman, Henri EZ Tonnang, Samira A Mohamed
{"title":"Cotton production areas are at high risk of invasion by Amrasca biguttula (Ishida) (Cicadellidae: Hemiptera): potential distribution under climate change","authors":"Abdelmutalab AG Azrag, Saliou Niassy, Adin Y Bloukounon-Goubalan, Elfatih M Abdel-Rahman, Henri EZ Tonnang, Samira A Mohamed","doi":"10.1002/ps.8659","DOIUrl":null,"url":null,"abstract":"The cotton jassid, <i>Amrasca biguttula</i>, a dangerous and polyphagous pest, has recently invaded the Middle East, Africa and South America, raising concerns about the future of cotton and other food crops including okra, eggplant and potato. However, its potential distribution remains largely unknown, posing a challenge in developing effective phytosanitary strategies. We used an ensemble model of six machine-learning algorithms including random forest, maxent, support vector machines, classification and regression tree, generalized linear model and boosted regression trees to forecast the potential distribution of <i>A. biguttula</i> in the present and future using presence records of the pest and bioclimatic predictors. The accuracy of these algorithms was assessed based on the area under the curve (AUC), correlation (COR), deviance and true skill statistic (TSS).","PeriodicalId":218,"journal":{"name":"Pest Management Science","volume":"248 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pest Management Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ps.8659","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

The cotton jassid, Amrasca biguttula, a dangerous and polyphagous pest, has recently invaded the Middle East, Africa and South America, raising concerns about the future of cotton and other food crops including okra, eggplant and potato. However, its potential distribution remains largely unknown, posing a challenge in developing effective phytosanitary strategies. We used an ensemble model of six machine-learning algorithms including random forest, maxent, support vector machines, classification and regression tree, generalized linear model and boosted regression trees to forecast the potential distribution of A. biguttula in the present and future using presence records of the pest and bioclimatic predictors. The accuracy of these algorithms was assessed based on the area under the curve (AUC), correlation (COR), deviance and true skill statistic (TSS).

Abstract Image

棉花产区是石田小蠹(姬蠹科:半翅目)入侵的高发区:气候变化下的潜在分布
棉花啮虫(Amrasca biguttula)是一种危险的多食性害虫,最近已入侵中东、非洲和南美洲,引起了人们对棉花和其他粮食作物(包括秋葵、茄子和马铃薯)未来的担忧。然而,它的潜在分布在很大程度上仍然未知,这对制定有效的植物检疫策略构成了挑战。我们使用了六种机器学习算法的集合模型,包括随机森林、maxent、支持向量机、分类和回归树、广义线性模型和助推回归树,利用害虫的存在记录和生物气候预测因子来预测 A. biguttula 在当前和未来的潜在分布。根据曲线下面积(AUC)、相关性(COR)、偏差和真实技能统计量(TSS)评估了这些算法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pest Management Science
Pest Management Science 农林科学-昆虫学
CiteScore
7.90
自引率
9.80%
发文量
553
审稿时长
4.8 months
期刊介绍: Pest Management Science is the international journal of research and development in crop protection and pest control. Since its launch in 1970, the journal has become the premier forum for papers on the discovery, application, and impact on the environment of products and strategies designed for pest management. Published for SCI by John Wiley & Sons Ltd.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信