Hydrogen peroxide photosynthesis from water and air using a scaled-up 1-m2 flow reactor

IF 11.5 Q1 CHEMISTRY, PHYSICAL
Xiaoshan Zheng, Rito Yanagi, Zhenhua Pan, Chong Zhou, Tian Liu, Baoliang Chen, Kenji Katayama, Shu Hu, Chiheng Chu
{"title":"Hydrogen peroxide photosynthesis from water and air using a scaled-up 1-m2 flow reactor","authors":"Xiaoshan Zheng, Rito Yanagi, Zhenhua Pan, Chong Zhou, Tian Liu, Baoliang Chen, Kenji Katayama, Shu Hu, Chiheng Chu","doi":"10.1016/j.checat.2024.101238","DOIUrl":null,"url":null,"abstract":"Particulate photocatalysis (PC) has shown great potential in sustainable chemical synthesis. Until now, developing a scalable PC system remains a major challenge hurdling the practical application of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) photosynthesis. Here, we report a flexible hydrophobic photocatalyst sheet based on visible-light-responsive bismuth vanadate (BiVO<sub>4</sub>) photocatalysts with (λ &lt; 520 nm) to achieve flow-transport-dependent cascade photocatalytic H<sub>2</sub>O<sub>2</sub> production. Using dissolved oxygen from the air and deionized water or tap water, the flexible sheets showed solar-to-chemical conversion (STC) efficiency of 0.11%. These BiVO<sub>4</sub> photocatalyst sheets were arranged in a 4 × 4-panels array in a 1-m<sup>2</sup> flow-by reactor and achieved 1-month outdoor stability under diurnal solar cycles. We utilized this solar-produced H<sub>2</sub>O<sub>2</sub> solution for disinfection, achieving &gt;99.9% inactivation of a coronavirus surrogate in 60 min. Techno-economic analysis (TEA) shows that at 2% STC efficiency, the cost becomes comparable to commercial approaches due to the elimination of transportation, storage, and deployment costs.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"45 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Particulate photocatalysis (PC) has shown great potential in sustainable chemical synthesis. Until now, developing a scalable PC system remains a major challenge hurdling the practical application of hydrogen peroxide (H2O2) photosynthesis. Here, we report a flexible hydrophobic photocatalyst sheet based on visible-light-responsive bismuth vanadate (BiVO4) photocatalysts with (λ < 520 nm) to achieve flow-transport-dependent cascade photocatalytic H2O2 production. Using dissolved oxygen from the air and deionized water or tap water, the flexible sheets showed solar-to-chemical conversion (STC) efficiency of 0.11%. These BiVO4 photocatalyst sheets were arranged in a 4 × 4-panels array in a 1-m2 flow-by reactor and achieved 1-month outdoor stability under diurnal solar cycles. We utilized this solar-produced H2O2 solution for disinfection, achieving >99.9% inactivation of a coronavirus surrogate in 60 min. Techno-economic analysis (TEA) shows that at 2% STC efficiency, the cost becomes comparable to commercial approaches due to the elimination of transportation, storage, and deployment costs.

Abstract Image

过氧化氢在水和空气中进行光合作用,使用放大的1平方米流动反应器
微粒光催化(PC)在可持续化学合成中显示出巨大的潜力。到目前为止,开发可扩展的PC系统仍然是阻碍过氧化氢(H2O2)光合作用实际应用的主要挑战。在这里,我们报道了一种柔性疏水光催化剂片基于可见光响应的钒酸铋(BiVO4)光催化剂(λ <;520 nm)来实现依赖于流动转运的级联光催化H2O2生产。利用空气中的溶解氧和去离子水或自来水,柔性薄片的太阳能-化学转换(STC)效率为0.11%。这些BiVO4光催化剂片在1平方米的流动反应器中以4 × 4板阵列排列,在昼夜太阳周期下实现了1个月的室外稳定性。我们利用这种太阳能生产的H2O2溶液进行消毒,在60分钟内实现了冠状病毒替代物99.9%的失活。技术经济分析(TEA)表明,在2%的STC效率下,由于消除了运输、储存和部署成本,成本与商业方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信