Synergistic integration of atomic-scale Ni-N sites and Ni nanoparticles for enhanced protonation in pH-universal electrochemical CO2 reduction

IF 11.5 Q1 CHEMISTRY, PHYSICAL
Xi Cao, Shan Ren, Zijuan Yu, Qikui Fan, Qian Lv, Rui Yu, Ang Li, Jian Yang, Junjie Mao
{"title":"Synergistic integration of atomic-scale Ni-N sites and Ni nanoparticles for enhanced protonation in pH-universal electrochemical CO2 reduction","authors":"Xi Cao, Shan Ren, Zijuan Yu, Qikui Fan, Qian Lv, Rui Yu, Ang Li, Jian Yang, Junjie Mao","doi":"10.1016/j.checat.2024.101237","DOIUrl":null,"url":null,"abstract":"The development of efficient and stable electrocatalysts for CO<sub>2</sub> reduction is crucial for sustainable CO production. This study introduces a catalyst where Ni nanoparticles and isolated Ni-N sites are supported on mesoporous nitrogen-doped carbon nanotubes (Ni@N-CNTs), which demonstrates exceptional performance in pH-universal environments. The Ni@N-CNTs catalyst achieves a remarkable CO Faradaic efficiency (FE) of about 95% at a current density of 1,200 mA cm<sup>−2</sup> in neutral and alkaline flow cells. Notably, it also maintains high FE (&gt;90%) at current densities ranging from 100 to 900 mA cm<sup>−2</sup> in acidic environments. Furthermore, in membrane electrode assembly (MEA), it achieves over 90% CO FE at 700 mA cm<sup>−2</sup> with prolonged stability. The catalyst can continuously produce CO with 97.5% purity in a practical setting, highlighting its potential for industrial applications. Mechanism studies indicate that the unique interaction between Ni-N and Ni nanoparticles in the Ni@N-CNTs catalyst optimizes the protonation step, enhancing CO formation.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"45 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of efficient and stable electrocatalysts for CO2 reduction is crucial for sustainable CO production. This study introduces a catalyst where Ni nanoparticles and isolated Ni-N sites are supported on mesoporous nitrogen-doped carbon nanotubes (Ni@N-CNTs), which demonstrates exceptional performance in pH-universal environments. The Ni@N-CNTs catalyst achieves a remarkable CO Faradaic efficiency (FE) of about 95% at a current density of 1,200 mA cm−2 in neutral and alkaline flow cells. Notably, it also maintains high FE (>90%) at current densities ranging from 100 to 900 mA cm−2 in acidic environments. Furthermore, in membrane electrode assembly (MEA), it achieves over 90% CO FE at 700 mA cm−2 with prolonged stability. The catalyst can continuously produce CO with 97.5% purity in a practical setting, highlighting its potential for industrial applications. Mechanism studies indicate that the unique interaction between Ni-N and Ni nanoparticles in the Ni@N-CNTs catalyst optimizes the protonation step, enhancing CO formation.

Abstract Image

原子尺度的Ni- n位点和Ni纳米粒子协同集成在ph -通用电化学CO2还原中增强质子化
开发高效、稳定的二氧化碳还原电催化剂是实现二氧化碳可持续生产的关键。本研究介绍了一种催化剂,将Ni纳米颗粒和分离的Ni- n位点负载在介孔氮掺杂碳纳米管上(Ni@N-CNTs),该催化剂在ph通用环境中表现出优异的性能。Ni@N-CNTs催化剂在中性和碱性液流电池中,电流密度为1200 mA cm−2时,CO的法拉第效率(FE)可达95%左右。值得注意的是,在酸性环境中,在电流密度为100至900 mA cm - 2的情况下,它也能保持高FE (>90%)。此外,在膜电极组装(MEA)中,它在700 mA cm - 2下达到90%以上的CO FE,并具有长时间的稳定性。该催化剂在实际环境中可连续生产纯度为97.5%的CO,具有工业应用潜力。机理研究表明,Ni@N-CNTs催化剂中Ni- n和Ni纳米颗粒之间独特的相互作用优化了质子化步骤,促进了CO的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信