Borja Rodríguez-Lozano, Emilio Rodríguez-Caballero, and Yolanda Cantón
{"title":"Resource redistribution mediated by hydrological connectivity modulates vegetation response to aridification in drylands","authors":"Borja Rodríguez-Lozano, Emilio Rodríguez-Caballero, and Yolanda Cantón","doi":"10.1111/ecog.07650","DOIUrl":null,"url":null,"abstract":"Water scarcity poses a significant life constraint in global drylands that determines species adaptations and mosaic of exposed bare areas and vegetation patches. Runoff-water redistribution resulting from this spatial configuration has been suggested as a key process controlling water availability for vegetation and ecosystem functioning. However, the potential of this process to ameliorate the negative impacts of aridification in drylands remains unclear, and there is no empirical evidence of its relevance on natural ecosystems under different levels of aridity and disturbance regimes. To address this gap, we analysed temporal series of the normalized vegetation index (NDVI, a proxy of vegetation functioning) along a regional aridity–disturbance gradient under current and future climatic conditions. We found that mean NDVI increases in areas of runoff water accumulation (calculated using a water redistribution index) until a certain threshold, above which vegetation patches are not able to retain extra runoff water. Once thresholds were identified, we analysed the role of water redistribution on vegetation dynamics by analysing temporal series of monthly NDVI in a space–for–time substitution approach. The obtained results provided further evidence of the runoff water redistribution on vegetation, triggering a positive feedback between water accumulation and vegetation growth. Results obtained by the combination of the obtained model with climatic data from the 6th IPCC report suggest that this feedback could ameliorate the expected negative effects of aridification in drylands. However, this effect is partially counterbalanced in scenarios of high human disturbance and in areas where vegetation is not able to trap and retain the extra amount of resources given by runoff. Overall, our results provide empirical evidence of the relevance of runoff redistribution as a key process linking vegetation patterns to climate resistance in drylands that underscores its importance in the analysis and modelling of drylands' responses to aridification.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"1 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ecog.07650","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Water scarcity poses a significant life constraint in global drylands that determines species adaptations and mosaic of exposed bare areas and vegetation patches. Runoff-water redistribution resulting from this spatial configuration has been suggested as a key process controlling water availability for vegetation and ecosystem functioning. However, the potential of this process to ameliorate the negative impacts of aridification in drylands remains unclear, and there is no empirical evidence of its relevance on natural ecosystems under different levels of aridity and disturbance regimes. To address this gap, we analysed temporal series of the normalized vegetation index (NDVI, a proxy of vegetation functioning) along a regional aridity–disturbance gradient under current and future climatic conditions. We found that mean NDVI increases in areas of runoff water accumulation (calculated using a water redistribution index) until a certain threshold, above which vegetation patches are not able to retain extra runoff water. Once thresholds were identified, we analysed the role of water redistribution on vegetation dynamics by analysing temporal series of monthly NDVI in a space–for–time substitution approach. The obtained results provided further evidence of the runoff water redistribution on vegetation, triggering a positive feedback between water accumulation and vegetation growth. Results obtained by the combination of the obtained model with climatic data from the 6th IPCC report suggest that this feedback could ameliorate the expected negative effects of aridification in drylands. However, this effect is partially counterbalanced in scenarios of high human disturbance and in areas where vegetation is not able to trap and retain the extra amount of resources given by runoff. Overall, our results provide empirical evidence of the relevance of runoff redistribution as a key process linking vegetation patterns to climate resistance in drylands that underscores its importance in the analysis and modelling of drylands' responses to aridification.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.