{"title":"In situ electrochemical production of solid peroxide from urine","authors":"Xinjian Shi, Yue Jiang, Bailin Zeng, Zhuoyue Sun, Maojin Yun, Peng Lv, Yu Jia, Xiaolin Zheng","doi":"10.1038/s41929-024-01277-3","DOIUrl":null,"url":null,"abstract":"<p>The selective extraction of urea from urine under mild conditions is essential for urban wastewater treatment. Here we devise an in situ electrochemical technique that converts urea, a nitrogen-rich waste, into percarbamide, a crystalline peroxide derivative of urea. This process simultaneously facilitates urine treatment and transforms waste into a valuable product. Using modified graphitic carbon-based catalysts, which are engineered with optimized active sites and structures, the system solidifies hydrogen peroxide and accelerates urea conversion. Precise control of temperature and urea concentration further enhances catalytic performance. The optimized process achieves near 100% purity in percarbamide precipitation from both human and mammalian urine. The collected percarbamide demonstrates remarkable potential for applications in various domains. This approach establishes a closed-loop system for production, utilization and recovery, offering a scalable solution for large-scale urine treatment with important economic and environmental value.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"57 1","pages":""},"PeriodicalIF":42.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-024-01277-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The selective extraction of urea from urine under mild conditions is essential for urban wastewater treatment. Here we devise an in situ electrochemical technique that converts urea, a nitrogen-rich waste, into percarbamide, a crystalline peroxide derivative of urea. This process simultaneously facilitates urine treatment and transforms waste into a valuable product. Using modified graphitic carbon-based catalysts, which are engineered with optimized active sites and structures, the system solidifies hydrogen peroxide and accelerates urea conversion. Precise control of temperature and urea concentration further enhances catalytic performance. The optimized process achieves near 100% purity in percarbamide precipitation from both human and mammalian urine. The collected percarbamide demonstrates remarkable potential for applications in various domains. This approach establishes a closed-loop system for production, utilization and recovery, offering a scalable solution for large-scale urine treatment with important economic and environmental value.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.