A Study of Halide Ion Exchange-Induced Phase Transition in CsPbBr3 Perovskite Quantum Dots for Detecting Chlorinated Volatile Compounds

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chia-Chien Kuo, Duc-Binh Nguyen, Yi-Hsin Chien
{"title":"A Study of Halide Ion Exchange-Induced Phase Transition in CsPbBr3 Perovskite Quantum Dots for Detecting Chlorinated Volatile Compounds","authors":"Chia-Chien Kuo, Duc-Binh Nguyen, Yi-Hsin Chien","doi":"10.1021/acsami.4c14868","DOIUrl":null,"url":null,"abstract":"The unique optical properties of perovskite quantum dots (PQDs), particularly the tunable photoluminescence (PL) across the visible spectrum, make them a promising tool for chlorinated detection. However, the correlation between the fluorescence emission shift behavior and the interface of phase transformation in PQDs has not been thoroughly explored. In this study, we synthesized CsPbBr<sub>3</sub> PQDs via the hot-injection method and demonstrated their ability to detect chlorinated volatile compounds such as HCl and NaOCl through a halide exchange process between the PQDs’ solid thin film and the chlorinated vapor phase. This exchange process, which occurs alongside chloride (Cl) and bromine (Br) ion exchange and halide atom rearrangement, leads to sequential structural changes: the initial CsPbBr<sub>3</sub> cubic Pm3̅m phase transitions to the CsPb<sub>2</sub>Br<sub><i>x</i></sub>Cl<sub>5–<i>x</i></sub> tetragonal <i>I</i>4/<i>mcm</i> phase, which subsequently transforms into the CsPbBr<sub><i>x</i></sub>Cl<sub>3–<i>x</i></sub> orthorhombic <i>Pnma</i> phase. The detailed exploration of this proposed mechanism during chlorinated vapor detection with CsPbBr<sub>3</sub> PQDs thin films, supported by X-ray diffraction (XRD) analysis and PL spectrum over time, revealed high sensitivity to HCl vapor. The limit of detection (LOD) for HCl vapor was determined to be 0.02 ppm in visual recognition and 0.005 ppm via PL spectra. Additionally, the LOD for NaOCl was established at 0.50 ppm, facilitated by the photolysis reaction accelerating the conversion of NaOCl to HCl vapor under UV light irradiation. These insights have enriched our understanding of the mechanisms involved and broadened the potential use of CsPbBr<sub>3</sub> PQDs as PL detection probes for chloride ions.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"7 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c14868","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The unique optical properties of perovskite quantum dots (PQDs), particularly the tunable photoluminescence (PL) across the visible spectrum, make them a promising tool for chlorinated detection. However, the correlation between the fluorescence emission shift behavior and the interface of phase transformation in PQDs has not been thoroughly explored. In this study, we synthesized CsPbBr3 PQDs via the hot-injection method and demonstrated their ability to detect chlorinated volatile compounds such as HCl and NaOCl through a halide exchange process between the PQDs’ solid thin film and the chlorinated vapor phase. This exchange process, which occurs alongside chloride (Cl) and bromine (Br) ion exchange and halide atom rearrangement, leads to sequential structural changes: the initial CsPbBr3 cubic Pm3̅m phase transitions to the CsPb2BrxCl5–x tetragonal I4/mcm phase, which subsequently transforms into the CsPbBrxCl3–x orthorhombic Pnma phase. The detailed exploration of this proposed mechanism during chlorinated vapor detection with CsPbBr3 PQDs thin films, supported by X-ray diffraction (XRD) analysis and PL spectrum over time, revealed high sensitivity to HCl vapor. The limit of detection (LOD) for HCl vapor was determined to be 0.02 ppm in visual recognition and 0.005 ppm via PL spectra. Additionally, the LOD for NaOCl was established at 0.50 ppm, facilitated by the photolysis reaction accelerating the conversion of NaOCl to HCl vapor under UV light irradiation. These insights have enriched our understanding of the mechanisms involved and broadened the potential use of CsPbBr3 PQDs as PL detection probes for chloride ions.

Abstract Image

用于检测氯化挥发性化合物的 CsPbBr3 包晶量子点中卤化物离子交换诱导相变的研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信