Tracing the electron transfer behavior driven by hydrophyte-derived carbon materials empowered autotrophic denitrification in iron-based constructed wetlands: Efficacy and enhancement mechanism

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Yuanyuan Fan, Shanshan Sun, Xushun Gu, Pan Yan, Yu Zhang, Yuanjun Peng, Shengbing He
{"title":"Tracing the electron transfer behavior driven by hydrophyte-derived carbon materials empowered autotrophic denitrification in iron-based constructed wetlands: Efficacy and enhancement mechanism","authors":"Yuanyuan Fan, Shanshan Sun, Xushun Gu, Pan Yan, Yu Zhang, Yuanjun Peng, Shengbing He","doi":"10.1016/j.watres.2025.123169","DOIUrl":null,"url":null,"abstract":"Iron-based constructed wetlands (ICWs) displayed great potential in deep nitrogen elimination for low-polluted wastewater. However, the unsatisfactory denitrification performance caused by the limited solubility and sluggish activity of iron substrates needs to be improved in an eco-effective manner. To fill this gap, the bioavailability of iron substrates (iron scraps) affected by wetland biomass-derived carbon materials with potential conductivity were explored. Results indicated that the cumulative removal of TN in biochar-added ICW (BC-ICW) and activated carbon-added ICW (AC-ICW) increased by 29.04% and 22.96%, respectively. The carbon matrix of AC played the geo-conductor role to facilitate the rapid release of iron ions, as indicated by the higher TN removal efficiency of AC-ICW (45.36 ± 1.45%) at the early stage, while the reduced conductivity of AC negatively impacted the nitrogen removal. BC-ICW exhibited intensified denitrification potential, with higher TN removal capacity (52.08 ± 3.04%) and effluent Fe<sup>2+</sup> concentration. Electroactive bacteria (EB) (<em>Geobacter, Desulfovibrio, Shewanella</em>, etc.) associated with extracellular electron transfer were enriched in BC-ICW, as well as the expanded niches breadth and improved microbial community diversity. The electron-shuttling effect of BC was mainly attributed to its oxygenated functional groups (quinone/phenolic moieties), which supported the electron transfer from EB to extracellular iron oxides, as evidenced by the increased Fe(III)(hydro)oxides bioavailability. Besides, biochar concurrently up-regulated the gene expression of electron transport chains/mediators and denitrification reductases, suggesting that BC boosted the active iron cycle and iron-mediated autotrophic denitrification in ICWs by accelerating intracellular and extracellular electron transfer. This work explored the electron transfer behavior of biomass-derived carbon materials coupled with ICWs to enhance denitrification, providing insights into the sustainable application of biomass derived carbon-assisted ICWs in tertiary treatment.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"31 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123169","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Iron-based constructed wetlands (ICWs) displayed great potential in deep nitrogen elimination for low-polluted wastewater. However, the unsatisfactory denitrification performance caused by the limited solubility and sluggish activity of iron substrates needs to be improved in an eco-effective manner. To fill this gap, the bioavailability of iron substrates (iron scraps) affected by wetland biomass-derived carbon materials with potential conductivity were explored. Results indicated that the cumulative removal of TN in biochar-added ICW (BC-ICW) and activated carbon-added ICW (AC-ICW) increased by 29.04% and 22.96%, respectively. The carbon matrix of AC played the geo-conductor role to facilitate the rapid release of iron ions, as indicated by the higher TN removal efficiency of AC-ICW (45.36 ± 1.45%) at the early stage, while the reduced conductivity of AC negatively impacted the nitrogen removal. BC-ICW exhibited intensified denitrification potential, with higher TN removal capacity (52.08 ± 3.04%) and effluent Fe2+ concentration. Electroactive bacteria (EB) (Geobacter, Desulfovibrio, Shewanella, etc.) associated with extracellular electron transfer were enriched in BC-ICW, as well as the expanded niches breadth and improved microbial community diversity. The electron-shuttling effect of BC was mainly attributed to its oxygenated functional groups (quinone/phenolic moieties), which supported the electron transfer from EB to extracellular iron oxides, as evidenced by the increased Fe(III)(hydro)oxides bioavailability. Besides, biochar concurrently up-regulated the gene expression of electron transport chains/mediators and denitrification reductases, suggesting that BC boosted the active iron cycle and iron-mediated autotrophic denitrification in ICWs by accelerating intracellular and extracellular electron transfer. This work explored the electron transfer behavior of biomass-derived carbon materials coupled with ICWs to enhance denitrification, providing insights into the sustainable application of biomass derived carbon-assisted ICWs in tertiary treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信