A high-valence bismuth(V) nanoplatform triggers cancer cell death and anti-tumor immune responses with exogenous excitation-free endogenous H2O2- and O2-independent ROS generation

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yizhang Tang, Xujiang Yu, Liangrui He, Meng Tang, Wenji Yue, Ruitong Chen, Jie Zhao, Qi Pan, Wanwan Li
{"title":"A high-valence bismuth(V) nanoplatform triggers cancer cell death and anti-tumor immune responses with exogenous excitation-free endogenous H2O2- and O2-independent ROS generation","authors":"Yizhang Tang, Xujiang Yu, Liangrui He, Meng Tang, Wenji Yue, Ruitong Chen, Jie Zhao, Qi Pan, Wanwan Li","doi":"10.1038/s41467-025-56110-7","DOIUrl":null,"url":null,"abstract":"<p>Reactive oxygen species with evoked immunotherapy holds tremendous promise for cancer treatment but has limitations due to its dependence on exogenous excitation and/or endogenous H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub>. Here we report a versatile oxidizing pentavalent bismuth(V) nanoplatform (NaBi<sup>V</sup>O<sub>3</sub>-PEG) can generate reactive oxygen species in an excitation-free and H<sub>2</sub>O<sub>2</sub>- and O<sub>2</sub>-independent manner. Upon exposure to the tumor microenvironment, NaBi<sup>V</sup>O<sub>3</sub>-PEG undergoes continuous H<sup>+</sup>-accelerated hydrolysis with •OH and <sup>1</sup>O<sub>2</sub> generation through electron transfer-mediated Bi<sup>V</sup>-to-Bi<sup>III</sup> conversion and lattice oxygen transformation. The simultaneous release of sodium counterions after endocytosis triggers caspase-1-mediated pyroptosis. NaBi<sup>V</sup>O<sub>3</sub>-PEG intratumorally administered initiates robust therapeutic efficacies against both primary and distant tumors and activates systemic immune responses to combat tumor metastasis. NaBi<sup>V</sup>O<sub>3</sub>-PEG intravenously administered can efficiently accumulate at the tumor site for further real-time computed tomography monitoring, immunotherapy, or alternative synergistic immune-radiotherapy. Overall, this work offers a nanomedicine based on high-valence bismuth(V) nanoplatform and underscores its great potential for cancer immunotherapy.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"84 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56110-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Reactive oxygen species with evoked immunotherapy holds tremendous promise for cancer treatment but has limitations due to its dependence on exogenous excitation and/or endogenous H2O2 and O2. Here we report a versatile oxidizing pentavalent bismuth(V) nanoplatform (NaBiVO3-PEG) can generate reactive oxygen species in an excitation-free and H2O2- and O2-independent manner. Upon exposure to the tumor microenvironment, NaBiVO3-PEG undergoes continuous H+-accelerated hydrolysis with •OH and 1O2 generation through electron transfer-mediated BiV-to-BiIII conversion and lattice oxygen transformation. The simultaneous release of sodium counterions after endocytosis triggers caspase-1-mediated pyroptosis. NaBiVO3-PEG intratumorally administered initiates robust therapeutic efficacies against both primary and distant tumors and activates systemic immune responses to combat tumor metastasis. NaBiVO3-PEG intravenously administered can efficiently accumulate at the tumor site for further real-time computed tomography monitoring, immunotherapy, or alternative synergistic immune-radiotherapy. Overall, this work offers a nanomedicine based on high-valence bismuth(V) nanoplatform and underscores its great potential for cancer immunotherapy.

Abstract Image

一种高价铋(V)纳米平台通过产生不受外源性刺激的内源性H2O2-和不依赖o2的ROS,触发癌细胞死亡和抗肿瘤免疫反应
活性氧与诱发免疫疗法在癌症治疗中具有巨大的前景,但由于其依赖外源性激励和/或内源性H2O2和O2,存在局限性。在这里,我们报道了一种多功能氧化五价铋(V)纳米平台(NaBiVO3-PEG)可以以无激发和不依赖H2O2和o2的方式产生活性氧。NaBiVO3-PEG暴露于肿瘤微环境后,通过电子转移介导的biv - biiii转化和晶格氧转化,持续进行H+加速水解,产生•OH和1O2。内吞后钠离子的同时释放触发caspase-1介导的焦亡。NaBiVO3-PEG瘤内给药可对原发性和远处肿瘤产生强大的治疗效果,并激活全身免疫反应以对抗肿瘤转移。静脉给药NaBiVO3-PEG可以有效地积聚在肿瘤部位,用于进一步的实时计算机断层扫描监测、免疫治疗或替代协同免疫放疗。总的来说,这项工作提供了一种基于高价铋(V)纳米平台的纳米药物,并强调了其在癌症免疫治疗中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
文献相关原料
公司名称
产品信息
麦克林
Polyvinylpyrrolidone
阿拉丁
Mitochondrial membrane potential detection kit
阿拉丁
1,2-dioleoyl-sn-glycero-3-phosphate sodium salt
阿拉丁
Phosphate buffer saline
阿拉丁
Potassium phosphate buffer
阿拉丁
Ethylene glycol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信