Lixin Bai, Juan Chen, Yi Zhang, Zheng Yi, Yuansen Xie, Maowen Xu, Yuruo Qi
{"title":"Oxygen-bridging and air-etching: advanced pore-regulation engineering in hard carbons for optimized low-voltage plateau capacity","authors":"Lixin Bai, Juan Chen, Yi Zhang, Zheng Yi, Yuansen Xie, Maowen Xu, Yuruo Qi","doi":"10.1016/j.nanoen.2025.110692","DOIUrl":null,"url":null,"abstract":"The intrinsic sodium storage performance of hard carbons is fundamentally governed by its structure attributes, which are primarily shaped by the precursor material. Therefore, a direct manipulation of precursors at the molecular level offers considerable flexibility in engineering hard carbon architectures. This study introduces a straightforward and effective pre-carbonization approach to modulate the molecular configuration and functional groups within celluloses, employing both oxygen-bridging and air-etching to stimulate the development of closed pores during carbonization. These closed pores not only facilitate the transport of sodium ions but also serve as active sites for sodium storage, resulting in a hard carbon with an impressive specific capacity of 421.1<!-- --> <!-- -->mA<!-- --> <!-- -->h g<sup>-1</sup> and a substantial low-voltage plateau capacity of 312.8<!-- --> <!-- -->mA<!-- --> <!-- -->h g<sup>-1</sup>. Extensive research has elucidated the formation mechanism of closed pores as well as its correlation with low-voltage plateau capacity, which will greatly forward the rational design of high-performance hard carbon anodes for next-generation sodium ion batteries.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"46 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2025.110692","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The intrinsic sodium storage performance of hard carbons is fundamentally governed by its structure attributes, which are primarily shaped by the precursor material. Therefore, a direct manipulation of precursors at the molecular level offers considerable flexibility in engineering hard carbon architectures. This study introduces a straightforward and effective pre-carbonization approach to modulate the molecular configuration and functional groups within celluloses, employing both oxygen-bridging and air-etching to stimulate the development of closed pores during carbonization. These closed pores not only facilitate the transport of sodium ions but also serve as active sites for sodium storage, resulting in a hard carbon with an impressive specific capacity of 421.1 mA h g-1 and a substantial low-voltage plateau capacity of 312.8 mA h g-1. Extensive research has elucidated the formation mechanism of closed pores as well as its correlation with low-voltage plateau capacity, which will greatly forward the rational design of high-performance hard carbon anodes for next-generation sodium ion batteries.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.