{"title":"Unlocking Ultrafast Diagnosis of Retired Batteries via Interpretable Machine Learning and Optical Fiber Sensors","authors":"Taolue Zhang, Ruifeng Tan, Pinxi Zhu, Tong-Yi Zhang, Jiaqiang Huang","doi":"10.1021/acsenergylett.4c03054","DOIUrl":null,"url":null,"abstract":"Retired batteries are of great economic and environmental importance, which are indispensable considerations in the life cycle of lithium-ion batteries. However, existing methods for evaluating retired batteries are time- and resource-consuming, hindering efficient screening for later recycling or reuse. Herein, combining optical fiber sensors and interpretable machine learning (ML), we establish a data-driven framework for retired battery datasets with 265 cells of different chemistries (LiFePO<sub>4</sub>/graphite, LiMn<sub>2</sub>O<sub>4</sub>/graphite) and achieve ultrafast state of health diagnosis within 3 min, offering mean absolute errors of 1.17% and 2.78%, respectively. The proposed data-driven framework identifies the salient regions in the time-resolved multivariable data and helps to uncover underlying thermodynamic/kinetic aging mechanisms. We also demonstrate the incorporated thermal information obtained via optical fibers complements voltage signals by improving prediction accuracy and antinoise ability. This work not only showcases the potential of battery sensing in retired battery diagnosis but also unlocks the unexplored synergy between sensing and interpretable ML for diverse battery applications.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"71 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c03054","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Retired batteries are of great economic and environmental importance, which are indispensable considerations in the life cycle of lithium-ion batteries. However, existing methods for evaluating retired batteries are time- and resource-consuming, hindering efficient screening for later recycling or reuse. Herein, combining optical fiber sensors and interpretable machine learning (ML), we establish a data-driven framework for retired battery datasets with 265 cells of different chemistries (LiFePO4/graphite, LiMn2O4/graphite) and achieve ultrafast state of health diagnosis within 3 min, offering mean absolute errors of 1.17% and 2.78%, respectively. The proposed data-driven framework identifies the salient regions in the time-resolved multivariable data and helps to uncover underlying thermodynamic/kinetic aging mechanisms. We also demonstrate the incorporated thermal information obtained via optical fibers complements voltage signals by improving prediction accuracy and antinoise ability. This work not only showcases the potential of battery sensing in retired battery diagnosis but also unlocks the unexplored synergy between sensing and interpretable ML for diverse battery applications.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.