Yuzhu Fan, Gaolong Cao, Sheng Jiang, Johan Åkerman, Jonas Weissenrieder
{"title":"Spatiotemporal observation of surface plasmon polariton mediated ultrafast demagnetization","authors":"Yuzhu Fan, Gaolong Cao, Sheng Jiang, Johan Åkerman, Jonas Weissenrieder","doi":"10.1038/s41467-025-56158-5","DOIUrl":null,"url":null,"abstract":"<p>Surface plasmons offer a promising avenue in the pursuit of swift and localized manipulation of magnetism for advanced magnetic storage and information processing technology. However, observing and understanding spatiotemporal interactions between surface plasmons and spins remains challenging, hindering optimal optical control of magnetism. Here, we demonstrate the spatiotemporal observation of patterned ultrafast demagnetization dynamics in permalloy mediated by propagating surface plasmon polaritons with sub-picosecond time- and sub-μm spatial- scales by employing Lorentz ultrafast electron microscopy combined with excitation through transient optical gratings. We discover correlated spatial distributions of demagnetization amplitude and surface plasmon polariton intensity, the latter characterized by photo-induced near-field electron microscopy. Furthermore, by comparing the results with patterned ultrafast demagnetization dynamics without surface plasmon polariton interaction, we show that the demagnetization is not only enhanced but also exhibits a spatiotemporal modulation near a spatial discontinuity (plasmonic hot spot). Our findings shed light on the intricate interplay between surface plasmons and spins, offer insights into the optimized control of optical excitation of magnetic materials and push the boundaries of ultrafast manipulation of magnetism.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"37 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56158-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Surface plasmons offer a promising avenue in the pursuit of swift and localized manipulation of magnetism for advanced magnetic storage and information processing technology. However, observing and understanding spatiotemporal interactions between surface plasmons and spins remains challenging, hindering optimal optical control of magnetism. Here, we demonstrate the spatiotemporal observation of patterned ultrafast demagnetization dynamics in permalloy mediated by propagating surface plasmon polaritons with sub-picosecond time- and sub-μm spatial- scales by employing Lorentz ultrafast electron microscopy combined with excitation through transient optical gratings. We discover correlated spatial distributions of demagnetization amplitude and surface plasmon polariton intensity, the latter characterized by photo-induced near-field electron microscopy. Furthermore, by comparing the results with patterned ultrafast demagnetization dynamics without surface plasmon polariton interaction, we show that the demagnetization is not only enhanced but also exhibits a spatiotemporal modulation near a spatial discontinuity (plasmonic hot spot). Our findings shed light on the intricate interplay between surface plasmons and spins, offer insights into the optimized control of optical excitation of magnetic materials and push the boundaries of ultrafast manipulation of magnetism.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.