Duck Gyun Kim, Boncheol Gu, Yujin Cha, Jeonghan Ha, Yongjae Lee, Gahyeon Kim, Byung-Kwan Cho, Min-Kyu Oh
{"title":"Engineered CRISPR-Cas9 for Streptomyces sp. genome editing to improve specialized metabolite production","authors":"Duck Gyun Kim, Boncheol Gu, Yujin Cha, Jeonghan Ha, Yongjae Lee, Gahyeon Kim, Byung-Kwan Cho, Min-Kyu Oh","doi":"10.1038/s41467-025-56278-y","DOIUrl":null,"url":null,"abstract":"<p>The CRISPR-Cas9 system has frequently been used for genome editing in <i>Streptomyces</i>; however, cytotoxicity, caused by off-target cleavage, limits its application. In this study, we implement innovative modification to Cas9, strategically addressing challenges encountered during gene manipulation using Cas9 within strains possessing high GC content genome. The Cas9-BD, a modified Cas9 with the addition of polyaspartate to its N- and C-termini, is developed with decreased off-target binding and cytotoxicity compared with wild-type Cas9. Cas9-BD and similarly modified dCas9-BD have been successfully employed for simultaneous biosynthetic gene cluster (BGC) refactoring, multiple BGC deletions, or multiplexed gene expression modulations in <i>Streptomyces</i>. We also demonstrate improved secondary metabolite production using multiplexed genome editing with multiple single guide RNA libraries in several <i>Streptomyces</i> strains. Cas9-BD is also used to capture large BGCs using a developed in vivo cloning method. The modified CRISPR-Cas9 system is successfully applied to many <i>Streptomyces</i> sp., providing versatile and efficient genome editing tools for strain engineering of actinomycetes with high GC content genome.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"57 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56278-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The CRISPR-Cas9 system has frequently been used for genome editing in Streptomyces; however, cytotoxicity, caused by off-target cleavage, limits its application. In this study, we implement innovative modification to Cas9, strategically addressing challenges encountered during gene manipulation using Cas9 within strains possessing high GC content genome. The Cas9-BD, a modified Cas9 with the addition of polyaspartate to its N- and C-termini, is developed with decreased off-target binding and cytotoxicity compared with wild-type Cas9. Cas9-BD and similarly modified dCas9-BD have been successfully employed for simultaneous biosynthetic gene cluster (BGC) refactoring, multiple BGC deletions, or multiplexed gene expression modulations in Streptomyces. We also demonstrate improved secondary metabolite production using multiplexed genome editing with multiple single guide RNA libraries in several Streptomyces strains. Cas9-BD is also used to capture large BGCs using a developed in vivo cloning method. The modified CRISPR-Cas9 system is successfully applied to many Streptomyces sp., providing versatile and efficient genome editing tools for strain engineering of actinomycetes with high GC content genome.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.