Weiqian Yu, Wei Wei, James O. S. Hammond, Cunrui Han, Jiandong Xu, He Tan, Yan Zhan, Yanming Yang
{"title":"Evidence for an Upper Crustal Melt Lens Beneath Tianchi (Changbaishan) Volcano","authors":"Weiqian Yu, Wei Wei, James O. S. Hammond, Cunrui Han, Jiandong Xu, He Tan, Yan Zhan, Yanming Yang","doi":"10.1029/2024jb029884","DOIUrl":null,"url":null,"abstract":"Changbaishan volcanic field (CBVF) located on the border of China and the Democratic People's Republic of Korea (DPRK) is famous for intense volcanism in the Cenozoic. Many studies show evidence for partial melt beneath the volcano, but details on the structure of the magmatic system are lacking, due to a lack of data in the region. In this study, we obtained a high-resolution crust and upper mantle shear wave velocity (Vs) model beneath the CBVF by ambient noise tomography and receiver functions using a new dense seismic array. The absence of velocity anomalies beneath Wangtian'e and Namphothe volcanoes suggests a lack of magma within the crust. However, our models reveal two low Vs anomalies beneath Tianchi associated with magma reservoirs. The shallow low velocity anomaly (<4 km) overlaps with petrological estimates of the assembly depth of erupted rhyolite magma reservoir and the depth inferred for a hydrothermal reservoir from a recent MT study. The deeper one is located between 7 and 14 km depth with a lateral extent of ∼30 km, with a melt fraction of ∼6%–12%. Underlying the deeper low velocity zone in the lower crust is a region of faster velocity compared to the surrounding region. We interpret this as a low melt fraction crystal mush. This structure is similar to that seen at other large caldera volcanoes worldwide, suggesting a possible common mechanism underlying magmatism at these volcanoes.","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"9 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024jb029884","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Changbaishan volcanic field (CBVF) located on the border of China and the Democratic People's Republic of Korea (DPRK) is famous for intense volcanism in the Cenozoic. Many studies show evidence for partial melt beneath the volcano, but details on the structure of the magmatic system are lacking, due to a lack of data in the region. In this study, we obtained a high-resolution crust and upper mantle shear wave velocity (Vs) model beneath the CBVF by ambient noise tomography and receiver functions using a new dense seismic array. The absence of velocity anomalies beneath Wangtian'e and Namphothe volcanoes suggests a lack of magma within the crust. However, our models reveal two low Vs anomalies beneath Tianchi associated with magma reservoirs. The shallow low velocity anomaly (<4 km) overlaps with petrological estimates of the assembly depth of erupted rhyolite magma reservoir and the depth inferred for a hydrothermal reservoir from a recent MT study. The deeper one is located between 7 and 14 km depth with a lateral extent of ∼30 km, with a melt fraction of ∼6%–12%. Underlying the deeper low velocity zone in the lower crust is a region of faster velocity compared to the surrounding region. We interpret this as a low melt fraction crystal mush. This structure is similar to that seen at other large caldera volcanoes worldwide, suggesting a possible common mechanism underlying magmatism at these volcanoes.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.