Brownian bridges for contained random walks

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2025-01-20 DOI:10.1002/aic.18658
George Curtis, Doraiswami Ramkrishna, Vivek Narsimhan
{"title":"Brownian bridges for contained random walks","authors":"George Curtis, Doraiswami Ramkrishna, Vivek Narsimhan","doi":"10.1002/aic.18658","DOIUrl":null,"url":null,"abstract":"Using linear operator techniques, we demonstrate an efficient method for investigating rare events in stochastic processes. Specifically, we examine contained trajectories, which are continuous random walks that only leave a specified region of phase space after a set period of time <span data-altimg=\"/cms/asset/a0469ccf-17af-4b97-93c8-3c46f35fdc73/aic18658-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"250\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/aic18658-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper T\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00011541:media:aic18658:aic18658-math-0001\" display=\"inline\" location=\"graphic/aic18658-math-0001.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper T\" data-semantic-type=\"identifier\">T</mi></mrow>$$ T $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. We show that such trajectories can be efficiently generated through the use of a Brownian Bridge, derived via the solution to the Backward Fokker–Planck (BFP) equation. Using linear operator techniques, we place the BFP operator in self-adjoint form and show that in the asymptotic limit <span data-altimg=\"/cms/asset/128708a3-6ffd-4c86-b14d-78bdfa6190b3/aic18658-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"251\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/aic18658-math-0002.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"inequality\" data-semantic-speech=\"upper T much greater than 1\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,≫\" data-semantic-parent=\"3\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00011541:media:aic18658:aic18658-math-0002\" display=\"inline\" location=\"graphic/aic18658-math-0002.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic-role=\"inequality\" data-semantic-speech=\"upper T much greater than 1\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">T</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,≫\" data-semantic-parent=\"3\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\">≫</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></mrow>$$ T\\gg 1 $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, the set of paths contained in a specified region is equivalent to paths on a modified potential energy landscape that is related to the dominant eigenfunction of the self-adjoint BFP operator. We demonstrate this idea on several example problems, one of which is the Graetz problem, where one is interested in the survival time of a particle diffusing in tube flow.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"5 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18658","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Using linear operator techniques, we demonstrate an efficient method for investigating rare events in stochastic processes. Specifically, we examine contained trajectories, which are continuous random walks that only leave a specified region of phase space after a set period of time T$$ T $$. We show that such trajectories can be efficiently generated through the use of a Brownian Bridge, derived via the solution to the Backward Fokker–Planck (BFP) equation. Using linear operator techniques, we place the BFP operator in self-adjoint form and show that in the asymptotic limit T1$$ T\gg 1 $$, the set of paths contained in a specified region is equivalent to paths on a modified potential energy landscape that is related to the dominant eigenfunction of the self-adjoint BFP operator. We demonstrate this idea on several example problems, one of which is the Graetz problem, where one is interested in the survival time of a particle diffusing in tube flow.
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信