Sida Zhang, Jiashu Chen, Weigen Chen, Yiwen Su, Qianzhi Gou, Ruduan Yuan, Ziyi Wang, Kaixin Wang, Wentao Zhang, Xiqian Hu, Zhixian Zhang, Pinyi Wang, Fu Wan, Jie Liu, Beibei Li, Yifei Wang, Guangping Zheng, Meng Li, Jingyu Sun
{"title":"Regulating Water Molecules via Bioinspired Covalent Organic Framework Membranes for Zn Metal Anodes","authors":"Sida Zhang, Jiashu Chen, Weigen Chen, Yiwen Su, Qianzhi Gou, Ruduan Yuan, Ziyi Wang, Kaixin Wang, Wentao Zhang, Xiqian Hu, Zhixian Zhang, Pinyi Wang, Fu Wan, Jie Liu, Beibei Li, Yifei Wang, Guangping Zheng, Meng Li, Jingyu Sun","doi":"10.1002/anie.202424184","DOIUrl":null,"url":null,"abstract":"The Zn metal anode in aqueous zinc-ion batteries (AZIBs) faces daunting challenges including undesired water-induced parasitic reactions and sluggish ion migration kinetics. Herein, we develop three-dimensional covalent organic framework (COF) membranes with bioinspired ion channels toward stabilized Zn anodes. These COFs, featured by zincophilic pyridine-N sites, enable effective regulation of water molecules at the anode-electrolyte interphase. Systematic experimental analysis and theoretical simulations reveal the optimized COF-320N membrane functions as ion pumps, accordingly facilitating Zn2+ transport and inhibiting direct contact between Zn anode and free water molecules. Consequently, the bio-inspired strategy achieves improved Zn2+ transference number (0.61), rapid de-solvation kinetics, and suppressed hydrogen evolution. The assembled Zn||MnO2 pouch cell integrated with COF-320N membrane exhibits favorable electrochemical performances. Such a bioinspired concept for optimizing Zn anodes opens new pathways in developing advanced energy storage devices.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"1 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202424184","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Zn metal anode in aqueous zinc-ion batteries (AZIBs) faces daunting challenges including undesired water-induced parasitic reactions and sluggish ion migration kinetics. Herein, we develop three-dimensional covalent organic framework (COF) membranes with bioinspired ion channels toward stabilized Zn anodes. These COFs, featured by zincophilic pyridine-N sites, enable effective regulation of water molecules at the anode-electrolyte interphase. Systematic experimental analysis and theoretical simulations reveal the optimized COF-320N membrane functions as ion pumps, accordingly facilitating Zn2+ transport and inhibiting direct contact between Zn anode and free water molecules. Consequently, the bio-inspired strategy achieves improved Zn2+ transference number (0.61), rapid de-solvation kinetics, and suppressed hydrogen evolution. The assembled Zn||MnO2 pouch cell integrated with COF-320N membrane exhibits favorable electrochemical performances. Such a bioinspired concept for optimizing Zn anodes opens new pathways in developing advanced energy storage devices.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.