Wen Zhang , Han Yin , Jianping Chen , Changwei Lu , Tengyue Li , Bo Han , Zihan Zhao , Jia Wang , Junqi Chen
{"title":"Identification and thermal characteristics of linear discontinuities on a high-steep slope using UAV with thermal infrared imager","authors":"Wen Zhang , Han Yin , Jianping Chen , Changwei Lu , Tengyue Li , Bo Han , Zihan Zhao , Jia Wang , Junqi Chen","doi":"10.1016/j.ijrmms.2025.106025","DOIUrl":null,"url":null,"abstract":"<div><div>The discontinuity system exerts significant control over slope deformation and failure. Nevertheless, the automatic identification of these discontinuities remains a challenging task, particularly concerning linear discontinuities. Current methodologies are insufficient in detecting linear discontinuities, let alone conducting an analysis of their internal parameters. Consequently, this leads to imprecise guidance for rock mass engineering endeavors. This paper proposes a method for identifying linear discontinuities and researching their thermal characteristics, leveraging thermal infrared technology in conjunction with unmanned aerial vehicles. A comprehensive 24-h thermal infrared survey was conducted on the rock mass situated at the dam site of the Xulong Power Station in Yunnan Province, China, and the thermal radiation law of rock mass at the dam site was preliminarily summarized. The feasibility of identifying the linear discontinuities through the thermal radiation characteristics has been demonstrated. Furthermore, the correlation between discontinuity parameters and their thermal characteristics is established. The results indicated that the thermal characteristics of linear discontinuities (faults and joints) are closely related to their physical and geometric parameters. These findings enable the study of rock mass weathering and inference of the internal characteristics of discontinuities, thereby facilitating the analysis of slope deformation and failure.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"186 ","pages":"Article 106025"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160925000024","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The discontinuity system exerts significant control over slope deformation and failure. Nevertheless, the automatic identification of these discontinuities remains a challenging task, particularly concerning linear discontinuities. Current methodologies are insufficient in detecting linear discontinuities, let alone conducting an analysis of their internal parameters. Consequently, this leads to imprecise guidance for rock mass engineering endeavors. This paper proposes a method for identifying linear discontinuities and researching their thermal characteristics, leveraging thermal infrared technology in conjunction with unmanned aerial vehicles. A comprehensive 24-h thermal infrared survey was conducted on the rock mass situated at the dam site of the Xulong Power Station in Yunnan Province, China, and the thermal radiation law of rock mass at the dam site was preliminarily summarized. The feasibility of identifying the linear discontinuities through the thermal radiation characteristics has been demonstrated. Furthermore, the correlation between discontinuity parameters and their thermal characteristics is established. The results indicated that the thermal characteristics of linear discontinuities (faults and joints) are closely related to their physical and geometric parameters. These findings enable the study of rock mass weathering and inference of the internal characteristics of discontinuities, thereby facilitating the analysis of slope deformation and failure.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.