{"title":"Engineering Planar Crystallinity in Nitrogen-Vacancy-Incorporated Carbon Nitride for Efficient Photoredox Catalysis","authors":"Siying Lin, Baogang Wu, Yachao Xu, Huiquan Gu, Xudong Xiao, Ying Xie, Baojiang Jiang","doi":"10.1021/acsami.4c19235","DOIUrl":null,"url":null,"abstract":"The concurrent evolution of value-added benzimidazole compounds and hydrogen within the domain of chemical synthesis is of paramount importance. The utilization of photocatalysis enhances both the efficiency and environmental benignity of the synthetic process. However, it is profoundly challenging within a photocatalytic system to simultaneously augment the number of active sites and the internal transport rate of photogenerated charge carriers. To address this issue, a template-free, step-by-step assembly strategy has been proposed for the synthesis of planar crystalline carbon nitride (CCN) incorporated with a nitrogen vacancy (Nv). In contrast to the simultaneous assembly method, the sequential assembly process encompasses a progressive crystallization mechanism. This method is conducive to the mitigation of the incidence of structural disarray, thereby precluding the genesis of non-ordered defects throughout the whole bulk phase. The ordered in-plane arrangement facilitates the spatial segregation of electrons and holes, thereby decoupling the redox active sites. This separation minimizes the likelihood of back reactions and suppresses the recombination process, which is advantageous for the efficiency of photocatalytic coupling reactions. Certified by multiscale characterization and theoretical simulations, the incorporation of Nv enhances the energy band structure and provides sites with unsaturated coordination for the adsorption and activation of ethanol molecules. This interfacial synergistic effect of Nv and co-catalyst Pt as the Lewis site achieves efficient activation of both coupling partners. The obtained CCN demonstrates significant bifunctional photocatalytic activity, achieving a yield of benzimidazole at 5.0 mmol g<sup>–1</sup> with a conversion and selectivity rate of 99%. Simultaneously, the hydrogen evolution rate of CCN is measured at 9.1 mmol g<sup>–1</sup> within 4 h. The template-free, step-by-step assembled strategy utilized in this study provides new perspectives on developing highly efficient photocatalysts at the molecular level.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"26 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c19235","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The concurrent evolution of value-added benzimidazole compounds and hydrogen within the domain of chemical synthesis is of paramount importance. The utilization of photocatalysis enhances both the efficiency and environmental benignity of the synthetic process. However, it is profoundly challenging within a photocatalytic system to simultaneously augment the number of active sites and the internal transport rate of photogenerated charge carriers. To address this issue, a template-free, step-by-step assembly strategy has been proposed for the synthesis of planar crystalline carbon nitride (CCN) incorporated with a nitrogen vacancy (Nv). In contrast to the simultaneous assembly method, the sequential assembly process encompasses a progressive crystallization mechanism. This method is conducive to the mitigation of the incidence of structural disarray, thereby precluding the genesis of non-ordered defects throughout the whole bulk phase. The ordered in-plane arrangement facilitates the spatial segregation of electrons and holes, thereby decoupling the redox active sites. This separation minimizes the likelihood of back reactions and suppresses the recombination process, which is advantageous for the efficiency of photocatalytic coupling reactions. Certified by multiscale characterization and theoretical simulations, the incorporation of Nv enhances the energy band structure and provides sites with unsaturated coordination for the adsorption and activation of ethanol molecules. This interfacial synergistic effect of Nv and co-catalyst Pt as the Lewis site achieves efficient activation of both coupling partners. The obtained CCN demonstrates significant bifunctional photocatalytic activity, achieving a yield of benzimidazole at 5.0 mmol g–1 with a conversion and selectivity rate of 99%. Simultaneously, the hydrogen evolution rate of CCN is measured at 9.1 mmol g–1 within 4 h. The template-free, step-by-step assembled strategy utilized in this study provides new perspectives on developing highly efficient photocatalysts at the molecular level.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.