Leighton–Wintner-type oscillation theorem for the discrete [formula omitted]-Laplacian

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Kōdai Fujimoto, Kazuki Ishibashi, Masakazu Onitsuka
{"title":"Leighton–Wintner-type oscillation theorem for the discrete [formula omitted]-Laplacian","authors":"Kōdai Fujimoto, Kazuki Ishibashi, Masakazu Onitsuka","doi":"10.1016/j.aml.2025.109465","DOIUrl":null,"url":null,"abstract":"This paper addresses oscillation problems for difference equations with a discrete <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mrow><mml:mi>p</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>k</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>-Laplacian. In general, applying the Riccati technique to discrete oscillations is difficult. However, this study established a Leighton–Wintner-type oscillation theorem using the Riccati technique. Three examples are provided to illustrate the results. In particular, we examined the oscillatory problem for a certain nonlinear difference equation, including the Harper model, and demonstrated that the solutions are oscillatory even when <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mrow><mml:mi>p</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>k</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> diverges to infinity.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"15 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2025.109465","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses oscillation problems for difference equations with a discrete p(k)-Laplacian. In general, applying the Riccati technique to discrete oscillations is difficult. However, this study established a Leighton–Wintner-type oscillation theorem using the Riccati technique. Three examples are provided to illustrate the results. In particular, we examined the oscillatory problem for a certain nonlinear difference equation, including the Harper model, and demonstrated that the solutions are oscillatory even when p(k) diverges to infinity.
离散[公式省略]-拉普拉斯方程的leighton - wintner型振荡定理
本文探讨了具有离散 p(k)-Laplacian 的差分方程的振荡问题。一般来说,将里卡提技术应用于离散振荡是很困难的。然而,本研究利用 Riccati 技术建立了 Leighton-Wintner 型振荡定理。我们提供了三个例子来说明结果。其中,我们研究了包括 Harper 模型在内的某个非线性差分方程的振荡问题,并证明了即使 p(k) 发散到无穷大,解也是振荡的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信