A Fan-type condition for cycles in 1-tough and k-connected (P2 ∪ kP1)-free graphs

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Zhiquan Hu, Jie Wang, Changlong Shen
{"title":"A Fan-type condition for cycles in 1-tough and k-connected (P2 ∪ kP1)-free graphs","authors":"Zhiquan Hu, Jie Wang, Changlong Shen","doi":"10.1016/j.amc.2025.129300","DOIUrl":null,"url":null,"abstract":"For a graph <ce:italic>G</ce:italic>, define <mml:math altimg=\"si1.svg\"><mml:msub><mml:mrow><mml:mi>μ</mml:mi></mml:mrow><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:msub><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>:</mml:mo><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mi mathvariant=\"normal\">min</mml:mi><mml:mo>⁡</mml:mo><mml:mspace width=\"0.25em\"></mml:mspace><mml:mo stretchy=\"false\">{</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">max</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi><mml:mo>∈</mml:mo><mml:mi>S</mml:mi></mml:mrow></mml:msub><mml:mo>⁡</mml:mo><mml:msub><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:msub><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>:</mml:mo><mml:mspace width=\"0.25em\"></mml:mspace><mml:mi>S</mml:mi><mml:mo>∈</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"script\">S</mml:mi></mml:mrow><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:msub><mml:mo stretchy=\"false\">}</mml:mo></mml:math>, where <mml:math altimg=\"si2.svg\"><mml:msub><mml:mrow><mml:mi mathvariant=\"script\">S</mml:mi></mml:mrow><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:msub></mml:math> is the set consisting of all independent sets <mml:math altimg=\"si3.svg\"><mml:mo stretchy=\"false\">{</mml:mo><mml:msub><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:msub><mml:mo stretchy=\"false\">}</mml:mo></mml:math> of <ce:italic>G</ce:italic> such that some vertex, say <mml:math altimg=\"si4.svg\"><mml:msub><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub></mml:math> (<mml:math altimg=\"si5.svg\"><mml:mn>1</mml:mn><mml:mo>≤</mml:mo><mml:mi>i</mml:mi><mml:mo>≤</mml:mo><mml:mi>k</mml:mi></mml:math>), is at distance two from every other vertex in it. A graph <ce:italic>G</ce:italic> is called 1-tough if for each cut set <mml:math altimg=\"si6.svg\"><mml:mi>S</mml:mi><mml:mo>⊆</mml:mo><mml:mi>V</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:math>, <mml:math altimg=\"si7.svg\"><mml:mi>G</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">−</mml:mo><mml:mi>S</mml:mi></mml:math> has no more than <mml:math altimg=\"si8.svg\"><mml:mo stretchy=\"false\">|</mml:mo><mml:mi>S</mml:mi><mml:mo stretchy=\"false\">|</mml:mo></mml:math> components. Recently, Shi and Shan <ce:cross-ref ref>[19]</ce:cross-ref> conjectured that for each integer <mml:math altimg=\"si62.svg\"><mml:mi>k</mml:mi><mml:mo>≥</mml:mo><mml:mn>4</mml:mn></mml:math>, being 2<ce:italic>k</ce:italic>-connected is sufficient for 1-tough <mml:math altimg=\"si10.svg\"><mml:mo stretchy=\"false\">(</mml:mo><mml:msub><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>∪</mml:mo><mml:mi>k</mml:mi><mml:msub><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\"false\">)</mml:mo></mml:math>-free graphs to be hamiltonian, which was confirmed by Xu et al. <ce:cross-ref ref>[20]</ce:cross-ref> and Ota and Sanka <ce:cross-ref ref>[16]</ce:cross-ref>, respectively. In this article, we generalize the above results through the following Fan-type theorem: If <ce:italic>G</ce:italic> is a 1-tough and <ce:italic>k</ce:italic>-connected <mml:math altimg=\"si10.svg\"><mml:mo stretchy=\"false\">(</mml:mo><mml:msub><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>∪</mml:mo><mml:mi>k</mml:mi><mml:msub><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\"false\">)</mml:mo></mml:math>-free graph and satisfies <mml:math altimg=\"si11.svg\"><mml:msub><mml:mrow><mml:mi>μ</mml:mi></mml:mrow><mml:mrow><mml:mi>k</mml:mi><mml:mo linebreak=\"badbreak\" linebreakstyle=\"after\">+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>≥</mml:mo><mml:mfrac><mml:mrow><mml:mn>7</mml:mn><mml:mi>k</mml:mi><mml:mo linebreak=\"badbreak\" linebreakstyle=\"after\">−</mml:mo><mml:mn>6</mml:mn></mml:mrow><mml:mrow><mml:mn>5</mml:mn></mml:mrow></mml:mfrac></mml:math>, where <mml:math altimg=\"si12.svg\"><mml:mi>k</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math> is an integer, then <ce:italic>G</ce:italic> is hamiltonian or the Petersen graph.","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"23 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.amc.2025.129300","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For a graph G, define μk(G):=min{maxxSdG(x):SSk}, where Sk is the set consisting of all independent sets {u1,,uk} of G such that some vertex, say ui (1ik), is at distance two from every other vertex in it. A graph G is called 1-tough if for each cut set SV(G), GS has no more than |S| components. Recently, Shi and Shan [19] conjectured that for each integer k4, being 2k-connected is sufficient for 1-tough (P2kP1)-free graphs to be hamiltonian, which was confirmed by Xu et al. [20] and Ota and Sanka [16], respectively. In this article, we generalize the above results through the following Fan-type theorem: If G is a 1-tough and k-connected (P2kP1)-free graph and satisfies μk+1(G)7k65, where k2 is an integer, then G is hamiltonian or the Petersen graph.
1-坚韧k-连通(P2 ∪ kP1)自由图中圈的一个fan型条件
对于图 G,定义 μk(G):=min{maxx∈SdG(x):S∈Sk},其中 Sk 是由 G 的所有独立集 {u1,...,uk}组成的集合,使得某个顶点,例如 ui (1≤i≤k),与其中的每个其他顶点的距离都是 2。如果对于每个切集 S⊆V(G),G-S 的分量不超过 |S|,则图 G 称为 1-韧图。最近,Shi 和 Shan [19]猜想,对于每个整数 k≥4,2k-连通足以使无 1-韧(P2∪kP1)图成为哈密顿图,这一点分别被 Xu 等人 [20] 和 Ota 和 Sanka [16] 所证实。在本文中,我们通过下面的范型定理来推广上述结果:如果 G 是一个 1韧且 k 连接的 (P2∪kP1)-free 图,并且满足 μk+1(G)≥7k-65,其中 k≥2 是整数,那么 G 是哈密顿图或彼得森图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信