Propagation direction of traveling waves for a class of nonlocal dispersal bistable epidemic models

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Yu-Xia Hao, Guo-Bao Zhang
{"title":"Propagation direction of traveling waves for a class of nonlocal dispersal bistable epidemic models","authors":"Yu-Xia Hao, Guo-Bao Zhang","doi":"10.1016/j.aml.2025.109458","DOIUrl":null,"url":null,"abstract":"This work is devoted to studying the propagation direction of the following nonlocal dispersal epidemic model <ce:display><ce:formula><ce:label>(0.1)</ce:label><mml:math altimg=\"si1.svg\" display=\"block\"><mml:mfenced close=\"\" open=\"{\"><mml:mrow><mml:mtable align=\"axis\" columnlines=\"none none none none none none none none\" columnspacing=\"0.27em\" equalcolumns=\"false\" equalrows=\"false\"><mml:mtr><mml:mtd columnalign=\"right\"><mml:mfrac><mml:mrow><mml:mi>∂</mml:mi><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi>∂</mml:mi><mml:mi>t</mml:mi></mml:mrow></mml:mfrac></mml:mtd><mml:mtd columnalign=\"left\"><mml:mo>=</mml:mo><mml:msub><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mfenced close=\")\" open=\"(\"><mml:mrow><mml:msub><mml:mrow><mml:mo linebreak=\"badbreak\">∫</mml:mo></mml:mrow><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow></mml:msub><mml:mi>J</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>y</mml:mi><mml:mo>−</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mi>u</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>y</mml:mi><mml:mo>,</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mi>d</mml:mi><mml:mi>y</mml:mi><mml:mo>−</mml:mo><mml:mi>u</mml:mi></mml:mrow></mml:mfenced><mml:mo>−</mml:mo><mml:mi>u</mml:mi><mml:mo>+</mml:mo><mml:mi>α</mml:mi><mml:mi>v</mml:mi><mml:mo>,</mml:mo><mml:mspace width=\"1em\"></mml:mspace><mml:mspace width=\"0.2777em\"></mml:mspace><mml:mspace width=\"0.2777em\"></mml:mspace><mml:mspace width=\"2em\"></mml:mspace><mml:mspace width=\"1em\"></mml:mspace><mml:mspace width=\"0.16667em\"></mml:mspace></mml:mtd><mml:mtd columnalign=\"right\"></mml:mtd><mml:mtd columnalign=\"left\"><mml:mi>x</mml:mi><mml:mo>∈</mml:mo><mml:mi mathvariant=\"double-struck\">R</mml:mi><mml:mo>,</mml:mo><mml:mspace width=\"1em\"></mml:mspace><mml:mi>t</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo></mml:mtd></mml:mtr><mml:mtr><mml:mtd columnalign=\"right\"><mml:mfrac><mml:mrow><mml:mi>∂</mml:mi><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>∂</mml:mi><mml:mi>t</mml:mi></mml:mrow></mml:mfrac></mml:mtd><mml:mtd columnalign=\"left\"><mml:mo>=</mml:mo><mml:msub><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mfenced close=\")\" open=\"(\"><mml:mrow><mml:msub><mml:mrow><mml:mo linebreak=\"badbreak\">∫</mml:mo></mml:mrow><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow></mml:msub><mml:mi>J</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>y</mml:mi><mml:mo>−</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mi>v</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>y</mml:mi><mml:mo>,</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mi>d</mml:mi><mml:mi>y</mml:mi><mml:mo>−</mml:mo><mml:mi>v</mml:mi></mml:mrow></mml:mfenced><mml:mo>−</mml:mo><mml:mi>β</mml:mi><mml:mi>v</mml:mi><mml:mo>+</mml:mo><mml:mi>g</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>u</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>,</mml:mo><mml:mspace width=\"0.16667em\"></mml:mspace><mml:mspace width=\"1em\"></mml:mspace><mml:mspace width=\"1em\"></mml:mspace><mml:mspace width=\"1em\"></mml:mspace></mml:mtd><mml:mtd columnalign=\"right\"></mml:mtd><mml:mtd columnalign=\"left\"><mml:mi>x</mml:mi><mml:mo>∈</mml:mo><mml:mi mathvariant=\"double-struck\">R</mml:mi><mml:mo>,</mml:mo><mml:mspace width=\"1em\"></mml:mspace><mml:mi>t</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo></mml:mtd></mml:mtr></mml:mtable></mml:mrow></mml:mfenced></mml:math></ce:formula></ce:display>where <mml:math altimg=\"si4.svg\" display=\"inline\"><mml:mrow><mml:msub><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:mspace width=\"1em\"></mml:mspace><mml:msub><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:mspace width=\"1em\"></mml:mspace><mml:mi>α</mml:mi><mml:mo>,</mml:mo><mml:mspace width=\"1em\"></mml:mspace><mml:mi>β</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">&gt;</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math>. By discussing the case <mml:math altimg=\"si5.svg\" display=\"inline\"><mml:mrow><mml:mi>c</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math> and using the monotone dependence of the wave speed of traveling wave solutions on parameters, we state the sufficient conditions for the speed <mml:math altimg=\"si6.svg\" display=\"inline\"><mml:mrow><mml:mi>c</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">&gt;</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math> and <mml:math altimg=\"si7.svg\" display=\"inline\"><mml:mrow><mml:mi>c</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">&lt;</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math> under some calculations and analysis. Compared to the known works for classical diffusive epidemic models, we have to overcome difficulties due to the appearance of nonlocal dispersal operators in the current paper.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"24 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2025.109458","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work is devoted to studying the propagation direction of the following nonlocal dispersal epidemic model (0.1)ut=d1RJ(yx)u(y,t)dyuu+αv,xR,t>0,vt=d2RJ(yx)v(y,t)dyvβv+g(u),xR,t>0,where d1,d2,α,β>0. By discussing the case c=0 and using the monotone dependence of the wave speed of traveling wave solutions on parameters, we state the sufficient conditions for the speed c>0 and c<0 under some calculations and analysis. Compared to the known works for classical diffusive epidemic models, we have to overcome difficulties due to the appearance of nonlocal dispersal operators in the current paper.
一类非局部扩散双稳态流行病模型的行波传播方向
这项工作致力于研究以下非局部扩散流行病模型的传播方向(0.1)∂u∂t=d1∫RJ(y-x)u(y,t)dy-u-u+αv,x∈R,t>0,∂v∂t=d2∫RJ(y-x)v(y,t)dy-v-βv+g(u),x∈R,t>0,其中d1,d2,α,β>0。通过讨论 c=0 的情况,并利用行波解的波速对参数的单调依赖性,在一定的计算和分析下,阐述了速度 c>0 和 c<0 的充分条件。与经典扩散流行病模型的已知工作相比,本文必须克服由于非局部分散算子的出现所带来的困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信