Hae Jeong Kim, Jin Young Park, Ye‐Jin Choi, Soo‐Kwan Kim, Taeyeong Yong, Wonjong Lee, Gayoung Seo, Eon Ji Lee, Seongmin Choi, Hyung Ryul You, Won‐Woo Park, Soojin Yoon, Wook Hyun Kim, Jongchul Lim, Younghoon Kim, Oh‐Hoon Kwon, Jongmin Choi
{"title":"Homogeneously Blended Donor and Acceptor AgBiS2 Nanocrystal Inks Enable High‐Performance Eco‐Friendly Solar Cells with Enhanced Carrier Diffusion Length","authors":"Hae Jeong Kim, Jin Young Park, Ye‐Jin Choi, Soo‐Kwan Kim, Taeyeong Yong, Wonjong Lee, Gayoung Seo, Eon Ji Lee, Seongmin Choi, Hyung Ryul You, Won‐Woo Park, Soojin Yoon, Wook Hyun Kim, Jongchul Lim, Younghoon Kim, Oh‐Hoon Kwon, Jongmin Choi","doi":"10.1002/aenm.202404552","DOIUrl":null,"url":null,"abstract":"Colloidal semiconductor nanocrystals (NCs) have garnered significant attention as promising photovoltaic materials due to their tunable optoelectronic properties enabled by surface chemistry. Among them, AgBiS<jats:sub>2</jats:sub> NCs stand out as an attractive candidate for solar cell applications due to their environmentally friendly composition, high absorption coefficients, and low‐temperature processability. However, AgBiS<jats:sub>2</jats:sub> NC photovoltaics generally exhibit lower power conversion efficiency (PCE) compared to other NC‐based devices, primarily due to numerous surface traps that serve as recombination sites, leading to a short diffusion length for free carriers. To address this challenge, this work develops donor and acceptor blended (D/A) AgBiS<jats:sub>2</jats:sub> films. Through ligand modulation, this work formulates acceptor and donor AgBiS<jats:sub>2</jats:sub> NC inks with suitable electrical band alignment for charge separation, while ensuring that they are fully miscible in the same solvent. This enabled the fabrication of high‐quality, thickness‐controllable D/A‐blended junction films. This work finds that this approach effectively facilitates carrier separation, leading to an enhanced carrier lifetime and diffusion length. As a result, using this approach, this work achieves AgBiS<jats:sub>2</jats:sub> films that are twice as thick in solar cell applications compared to conventional devices, leading to improvements in current density and a solar cell PCE of 8.26%.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"31 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404552","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Colloidal semiconductor nanocrystals (NCs) have garnered significant attention as promising photovoltaic materials due to their tunable optoelectronic properties enabled by surface chemistry. Among them, AgBiS2 NCs stand out as an attractive candidate for solar cell applications due to their environmentally friendly composition, high absorption coefficients, and low‐temperature processability. However, AgBiS2 NC photovoltaics generally exhibit lower power conversion efficiency (PCE) compared to other NC‐based devices, primarily due to numerous surface traps that serve as recombination sites, leading to a short diffusion length for free carriers. To address this challenge, this work develops donor and acceptor blended (D/A) AgBiS2 films. Through ligand modulation, this work formulates acceptor and donor AgBiS2 NC inks with suitable electrical band alignment for charge separation, while ensuring that they are fully miscible in the same solvent. This enabled the fabrication of high‐quality, thickness‐controllable D/A‐blended junction films. This work finds that this approach effectively facilitates carrier separation, leading to an enhanced carrier lifetime and diffusion length. As a result, using this approach, this work achieves AgBiS2 films that are twice as thick in solar cell applications compared to conventional devices, leading to improvements in current density and a solar cell PCE of 8.26%.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.