{"title":"Enhancing Lithium Metal Battery Performance with a Perfluorinated Bisalt Electrolyte Achieving High-Voltage Stability up to 4.8 V","authors":"Xue Li, Fei Luo, Miaomiao Yu, Runze Liu, Shangquan Zhao, Shan Fang","doi":"10.1016/j.ensm.2025.104048","DOIUrl":null,"url":null,"abstract":"The electrolyte holds a pivotal function in modulating and stabilizing the interphase of lithium metal anodes in lithium metal batteries. This study investigates the molecules composition of solvents and their interactions with lithium salts to the develop a perfluorinated bisalt electrolyte. This innovative electrolyte employs ethyl 2-fluoropropionate (EFP) in conjunction with fluoroethylene carbonate (FEC) to modulate the solvent shell structure, enhancing the cooperative effects of the dual lithium salts, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium hexafluorophosphate (LiPF<sub>6</sub>) (referred to as 15TP). This approach promotes anions aggregation and the development of a robust inorganic-rich electrode/electrolyte interphase layer, efficiently suppressing lithium dendrite growth and stabilizing the ultra-high-nickel LiNi<sub>0.91</sub>Co<sub>0.06</sub>Mn<sub>0.03</sub>O<sub>2</sub> (NCM91) cathode. Compared to commercial electrolytes, the 15TP significantly reduces undesirable side reactions at high-voltages. Its non-flammability, excellent wettability, and broad electrochemical window enable the Li||NCM91 cell to achieve a discharge capacity of 150 mAh g<sup>-1</sup> after 500 cycles at a 4.5 V and a 1 C rate, with a super high average Coulombic efficiency of 99.74%. It retains 85.57% capacity after 100 cycles at 4.7 V and exceeds 80% retention at 4.8 V. The findings provide a novel approach for designing high-voltage electrolytes for lithium metal batteries.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"78 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2025.104048","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The electrolyte holds a pivotal function in modulating and stabilizing the interphase of lithium metal anodes in lithium metal batteries. This study investigates the molecules composition of solvents and their interactions with lithium salts to the develop a perfluorinated bisalt electrolyte. This innovative electrolyte employs ethyl 2-fluoropropionate (EFP) in conjunction with fluoroethylene carbonate (FEC) to modulate the solvent shell structure, enhancing the cooperative effects of the dual lithium salts, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium hexafluorophosphate (LiPF6) (referred to as 15TP). This approach promotes anions aggregation and the development of a robust inorganic-rich electrode/electrolyte interphase layer, efficiently suppressing lithium dendrite growth and stabilizing the ultra-high-nickel LiNi0.91Co0.06Mn0.03O2 (NCM91) cathode. Compared to commercial electrolytes, the 15TP significantly reduces undesirable side reactions at high-voltages. Its non-flammability, excellent wettability, and broad electrochemical window enable the Li||NCM91 cell to achieve a discharge capacity of 150 mAh g-1 after 500 cycles at a 4.5 V and a 1 C rate, with a super high average Coulombic efficiency of 99.74%. It retains 85.57% capacity after 100 cycles at 4.7 V and exceeds 80% retention at 4.8 V. The findings provide a novel approach for designing high-voltage electrolytes for lithium metal batteries.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.