Helen Cai, Wanhao Zhang, Qiong Yuan, Anas A. Salameh, Saad Alahmari, Massimiliano Ferrara
{"title":"Cost-effective intelligent building: Energy management system using machine learning and multi-criteria decision support","authors":"Helen Cai, Wanhao Zhang, Qiong Yuan, Anas A. Salameh, Saad Alahmari, Massimiliano Ferrara","doi":"10.1016/j.eneco.2025.108184","DOIUrl":null,"url":null,"abstract":"Enhancing cost-effective energy management in buildings is critical for achieving sustainability goals and addressing the challenges posed by rising energy use, which is a major concern for energy policy frameworks worldwide. This study is a trailblazer in using multi-criteria decision-making (MCDM) methodologies for the real-time operational optimisation of building energy systems. Data collection and pre-processing, feature extraction, feature selection, classification, trust authentication, encryption, and decryption are among the techniques used in this approach. Pre-processing procedures for the raw data include feature encoding, dimension reduction, and normalisation approaches. The Hybrid Grey Level Co-occurrence Matrix Fast Fourier Transform (HGLCM-FFT) method is used for feature extraction. Filter-based methods are used for feature selection, including IG, CS, symmetric uncertainty, and gain ratio. The Hierarchical Gradient Boosted Isolation Forest (HGB-IF) technique is used for the classification. Distributed Adaptive Trust-Based Authentication (DAT-BA), a security architecture in distributed cloud environments, uses trust authentication. The Particle Swarm Optimized Symmetrical Blowfish (PSOSB) method is used for encryption and decryption.The proposed framework not only ensures robust data security but also provides actionable insights for energy efficiency improvements, aligning with broader economic and environmental objectives. The suggested work is implemented using OS Python – 3.9.6; the performance of the proposed model is Attack Detection Rate, False alarm rate, True positive rate, Network usage, CPU usage, Encryption time, encryption time, and Throughput.","PeriodicalId":11665,"journal":{"name":"Energy Economics","volume":"13 1","pages":""},"PeriodicalIF":13.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1016/j.eneco.2025.108184","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing cost-effective energy management in buildings is critical for achieving sustainability goals and addressing the challenges posed by rising energy use, which is a major concern for energy policy frameworks worldwide. This study is a trailblazer in using multi-criteria decision-making (MCDM) methodologies for the real-time operational optimisation of building energy systems. Data collection and pre-processing, feature extraction, feature selection, classification, trust authentication, encryption, and decryption are among the techniques used in this approach. Pre-processing procedures for the raw data include feature encoding, dimension reduction, and normalisation approaches. The Hybrid Grey Level Co-occurrence Matrix Fast Fourier Transform (HGLCM-FFT) method is used for feature extraction. Filter-based methods are used for feature selection, including IG, CS, symmetric uncertainty, and gain ratio. The Hierarchical Gradient Boosted Isolation Forest (HGB-IF) technique is used for the classification. Distributed Adaptive Trust-Based Authentication (DAT-BA), a security architecture in distributed cloud environments, uses trust authentication. The Particle Swarm Optimized Symmetrical Blowfish (PSOSB) method is used for encryption and decryption.The proposed framework not only ensures robust data security but also provides actionable insights for energy efficiency improvements, aligning with broader economic and environmental objectives. The suggested work is implemented using OS Python – 3.9.6; the performance of the proposed model is Attack Detection Rate, False alarm rate, True positive rate, Network usage, CPU usage, Encryption time, encryption time, and Throughput.
期刊介绍:
Energy Economics is a field journal that focuses on energy economics and energy finance. It covers various themes including the exploitation, conversion, and use of energy, markets for energy commodities and derivatives, regulation and taxation, forecasting, environment and climate, international trade, development, and monetary policy. The journal welcomes contributions that utilize diverse methods such as experiments, surveys, econometrics, decomposition, simulation models, equilibrium models, optimization models, and analytical models. It publishes a combination of papers employing different methods to explore a wide range of topics. The journal's replication policy encourages the submission of replication studies, wherein researchers reproduce and extend the key results of original studies while explaining any differences. Energy Economics is indexed and abstracted in several databases including Environmental Abstracts, Fuel and Energy Abstracts, Social Sciences Citation Index, GEOBASE, Social & Behavioral Sciences, Journal of Economic Literature, INSPEC, and more.