Fitting Methods for Probability Distribution Functions in Turbulent Star-forming Clouds

Avery Kiihne, Sabrina M. Appel, Blakesley Burkhart, Vadim A. Semenov and Christoph Federrath
{"title":"Fitting Methods for Probability Distribution Functions in Turbulent Star-forming Clouds","authors":"Avery Kiihne, Sabrina M. Appel, Blakesley Burkhart, Vadim A. Semenov and Christoph Federrath","doi":"10.3847/1538-4357/ad99d5","DOIUrl":null,"url":null,"abstract":"We use a suite of 3D simulations of star-forming molecular clouds, with and without stellar feedback and magnetic fields, to investigate the effectiveness of different fitting methods for volume and column density probability distribution functions (PDFs). The first method fits a piecewise lognormal and power-law (PL) function to recover PDF parameters such as the PL slope and transition density. The second method fits a polynomial spline function and examines the first and second derivatives of the spline to determine the PL slope and the functional transition density. The first PL (set by the transition between lognormal and PL function) can also be visualized in the derivatives directly. In general, the two methods produce fits that agree reasonably well for volume density but vary for column density, likely due to the increased statistical noise in the column density PDFs as compared to the volume density PDFs. We test a well-known conversion for estimating volume density PL slopes from column density slopes and find that the spline method produces a better match (χ2 of 3.34 versus χ2 of 5.92), albeit with a significant scatter. Ultimately, we recommend the use of both fitting methods on column density data to mitigate the effects of noise.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"140 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad99d5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use a suite of 3D simulations of star-forming molecular clouds, with and without stellar feedback and magnetic fields, to investigate the effectiveness of different fitting methods for volume and column density probability distribution functions (PDFs). The first method fits a piecewise lognormal and power-law (PL) function to recover PDF parameters such as the PL slope and transition density. The second method fits a polynomial spline function and examines the first and second derivatives of the spline to determine the PL slope and the functional transition density. The first PL (set by the transition between lognormal and PL function) can also be visualized in the derivatives directly. In general, the two methods produce fits that agree reasonably well for volume density but vary for column density, likely due to the increased statistical noise in the column density PDFs as compared to the volume density PDFs. We test a well-known conversion for estimating volume density PL slopes from column density slopes and find that the spline method produces a better match (χ2 of 3.34 versus χ2 of 5.92), albeit with a significant scatter. Ultimately, we recommend the use of both fitting methods on column density data to mitigate the effects of noise.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信