{"title":"The SARS-CoV-2 nucleocapsid protein interferes with the full enzymatic activation of UPF1 and its interaction with UPF2","authors":"Veronica Nuccetelli, Makram Mghezzi-Habellah, Séverine Deymier, Armelle Roisin, Francine Gérard-Baraggia, Cecilia Rocchi, Pierre-Damien Coureux, Patrice Gouet, Andrea Cimarelli, Vincent Mocquet, Francesca Fiorini","doi":"10.1093/nar/gkaf010","DOIUrl":null,"url":null,"abstract":"The nonsense-mediated mRNA decay (NMD) pathway triggers the degradation of defective mRNAs and governs the expression of mRNAs with specific characteristics. Current understanding indicates that NMD is often significantly suppressed during viral infections to protect the viral genome. In numerous viruses, this inhibition is achieved through direct or indirect interference with the RNA helicase UPF1, thereby promoting viral replication and enhancing pathogenesis. In this study, we employed biochemical, biophysical assays and cellular investigations to explore the interplay between UPF1 and the nucleocapsid (Np) protein of SARS-CoV-2. We evaluated their direct interaction and its impact on inhibiting cellular NMD. Furthermore, we characterized how this interaction affects UPF1’s enzymatic function. Our findings demonstrate that Np inhibits the unwinding activity of UPF1 by physically obstructing its access to structured nucleic acid substrates. Additionally, we showed that Np binds directly to UPF2, disrupting the formation of the UPF1/UPF2 complex essential for NMD progression. Intriguingly, our research also uncovered a surprising pro-viral role of UPF1 and an antiviral function of UPF2. These results unveil a novel, multi-faceted mechanism by which SARS-CoV-2 evades the host’s defenses and manipulates cellular components. This underscores the potential therapeutic strategy of targeting Np-UPF1/UPF2 interactions to treat COVID-19.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"151 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf010","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The nonsense-mediated mRNA decay (NMD) pathway triggers the degradation of defective mRNAs and governs the expression of mRNAs with specific characteristics. Current understanding indicates that NMD is often significantly suppressed during viral infections to protect the viral genome. In numerous viruses, this inhibition is achieved through direct or indirect interference with the RNA helicase UPF1, thereby promoting viral replication and enhancing pathogenesis. In this study, we employed biochemical, biophysical assays and cellular investigations to explore the interplay between UPF1 and the nucleocapsid (Np) protein of SARS-CoV-2. We evaluated their direct interaction and its impact on inhibiting cellular NMD. Furthermore, we characterized how this interaction affects UPF1’s enzymatic function. Our findings demonstrate that Np inhibits the unwinding activity of UPF1 by physically obstructing its access to structured nucleic acid substrates. Additionally, we showed that Np binds directly to UPF2, disrupting the formation of the UPF1/UPF2 complex essential for NMD progression. Intriguingly, our research also uncovered a surprising pro-viral role of UPF1 and an antiviral function of UPF2. These results unveil a novel, multi-faceted mechanism by which SARS-CoV-2 evades the host’s defenses and manipulates cellular components. This underscores the potential therapeutic strategy of targeting Np-UPF1/UPF2 interactions to treat COVID-19.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.