Zincophilic CuO as electron sponge to facilitate dendrite-free zinc-based flow battery

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jin Seong Cha, Sanghyeon Park, Noh-Uk Seo, Yun-Chan Kang, Chan-Woo Lee, Jung Hoon Yang
{"title":"Zincophilic CuO as electron sponge to facilitate dendrite-free zinc-based flow battery","authors":"Jin Seong Cha, Sanghyeon Park, Noh-Uk Seo, Yun-Chan Kang, Chan-Woo Lee, Jung Hoon Yang","doi":"10.1038/s41467-025-56011-9","DOIUrl":null,"url":null,"abstract":"<p>Zinc (Zn)-based batteries have been persistently challenged by the critical issue of inhomogeneous zinc deposition/stripping process on substrate surface. Herein, we reveal that zinc electrodeposition behaviors dramatically improved through the introduction of highly zincophilic copper oxide nanoparticles (CuO NPs). Strong electronic redistribution between Zn and CuO explains the high Zn affinity on CuO, with negligible nucleation overpotential. Additionally, CuO exhibits remarkable electron-accepting and -donating capabilities in electron-rich and electron-deficient environments, resembling a sponge. This ‘Electron Sponge’ effect emerges from stable Zn-O bonding in CuO, enhancing electron duality in the Zn-O bond region. This unique strategy is pivotal in mitigating dendritic growth, fostering dendrite-free zinc-based flow batteries with enhanced rate performance and cyclability. It presents significant performance with not only high energy density (180 Wh L<sup>−1</sup>) but also the long cycle stability (&gt; 2500 cycles) at high current density (140 mA cm<sup>−2</sup>).</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"35 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56011-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc (Zn)-based batteries have been persistently challenged by the critical issue of inhomogeneous zinc deposition/stripping process on substrate surface. Herein, we reveal that zinc electrodeposition behaviors dramatically improved through the introduction of highly zincophilic copper oxide nanoparticles (CuO NPs). Strong electronic redistribution between Zn and CuO explains the high Zn affinity on CuO, with negligible nucleation overpotential. Additionally, CuO exhibits remarkable electron-accepting and -donating capabilities in electron-rich and electron-deficient environments, resembling a sponge. This ‘Electron Sponge’ effect emerges from stable Zn-O bonding in CuO, enhancing electron duality in the Zn-O bond region. This unique strategy is pivotal in mitigating dendritic growth, fostering dendrite-free zinc-based flow batteries with enhanced rate performance and cyclability. It presents significant performance with not only high energy density (180 Wh L−1) but also the long cycle stability (> 2500 cycles) at high current density (140 mA cm−2).

Abstract Image

作为电子海绵的亲锌氧化铜促进无枝晶型锌基液流电池的发展
锌基电池一直受到衬底表面锌沉积/剥离过程不均匀的关键问题的挑战。在此,我们发现通过引入高亲锌性氧化铜纳米粒子(CuO NPs),锌电沉积行为显著改善。Zn和CuO之间的强电子重分布解释了Zn对CuO的高亲和力,而成核过电位可以忽略不计。此外,在富电子和缺电子环境中,CuO表现出显著的电子接受和给电子能力,类似于海绵。这种“电子海绵”效应是由稳定的Zn-O键在CuO中产生的,增强了Zn-O键区域的电子对偶性。这种独特的策略对于减缓枝晶生长,培养无枝晶锌基液流电池具有增强的倍率性能和可循环性至关重要。它不仅具有高能量密度(180 Wh L−1),而且具有长周期稳定性(>;2500周期)在高电流密度(140毫安厘米−2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信