A hydrogenative oxidation strategy for the single-step synthesis of lactams from N-heteroarenes using water

IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL
Yaoyu Liang, Jie Luo, Cai You, Yael Diskin-Posner, David Milstein
{"title":"A hydrogenative oxidation strategy for the single-step synthesis of lactams from N-heteroarenes using water","authors":"Yaoyu Liang, Jie Luo, Cai You, Yael Diskin-Posner, David Milstein","doi":"10.1038/s41929-024-01286-2","DOIUrl":null,"url":null,"abstract":"<p>Using water as a hydrogen or oxygen source in organic synthesis has enabled various reductive and oxidative transformations, but incorporation of both hydrogen and oxygen atoms into the same molecule, representing an atom-economic and environmentally benign process, has scarcely been explored. Here we report a hydrogenative oxidation strategy using water as both a source of H<sub>2</sub> and formal oxidant, enabling the direct synthesis of lactams from <i>N</i>-heteroarenes and thereby eliminating the need for additional reductants and oxidants and minimizing waste generation. The reaction can be initiated either under low H<sub>2</sub> pressure or with a catalytic amount of H<sub>2</sub>, leading to the efficient transformation of various <i>N</i>-heteroarenes into lactams in excellent yield thanks to an in situ-generated, piperidine-based, ruthenium pincer complex that balances the hydrogenation and dehydrogenation processes. This study will promote the design of other hydrogenative oxidation reactions using water.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"31 1","pages":""},"PeriodicalIF":42.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-024-01286-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Using water as a hydrogen or oxygen source in organic synthesis has enabled various reductive and oxidative transformations, but incorporation of both hydrogen and oxygen atoms into the same molecule, representing an atom-economic and environmentally benign process, has scarcely been explored. Here we report a hydrogenative oxidation strategy using water as both a source of H2 and formal oxidant, enabling the direct synthesis of lactams from N-heteroarenes and thereby eliminating the need for additional reductants and oxidants and minimizing waste generation. The reaction can be initiated either under low H2 pressure or with a catalytic amount of H2, leading to the efficient transformation of various N-heteroarenes into lactams in excellent yield thanks to an in situ-generated, piperidine-based, ruthenium pincer complex that balances the hydrogenation and dehydrogenation processes. This study will promote the design of other hydrogenative oxidation reactions using water.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Catalysis
Nature Catalysis Chemical Engineering-Bioengineering
CiteScore
52.10
自引率
1.10%
发文量
140
期刊介绍: Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry. Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信