Nina Küster, Lena Roling, Ardin Ouayoue, Katharina Steeg, Jude M. Przyborski
{"title":"A Systematic Targeted Genetic Screen Identifies Proteins Involved in Cytoadherence of the Malaria Parasite P. falciparum","authors":"Nina Küster, Lena Roling, Ardin Ouayoue, Katharina Steeg, Jude M. Przyborski","doi":"10.1111/mmi.15337","DOIUrl":null,"url":null,"abstract":"Immediately after invading their chosen host cell, the mature human erythrocyte, malaria parasites begin to export an array of proteins to this compartment, where they initiate processes that are prerequisite for parasite survival and propagation, including nutrient import and immune evasion. One consequence of these activities is the emergence of novel adhesive phenotypes that can lead directly to pathology in the human host. To identify parasite proteins involved in this process, we used modern genetic tools to target genes encoding 15 exported parasite proteins, selected by an in silico workflow. This resulted in four genetically modified parasite lines that were then characterised in detail. Of these lines, three could be shown to have aberrations in adhesion, and of these one appears to have a block in the transport and/or correct folding of the major surface adhesin PfEMP1 (<jats:italic>Plasmodium falciparum</jats:italic> erythrocyte membrane protein 1). Our data expand the known factors involved in this important process and once again highlight the complexity of this phenomenon.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"37 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15337","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immediately after invading their chosen host cell, the mature human erythrocyte, malaria parasites begin to export an array of proteins to this compartment, where they initiate processes that are prerequisite for parasite survival and propagation, including nutrient import and immune evasion. One consequence of these activities is the emergence of novel adhesive phenotypes that can lead directly to pathology in the human host. To identify parasite proteins involved in this process, we used modern genetic tools to target genes encoding 15 exported parasite proteins, selected by an in silico workflow. This resulted in four genetically modified parasite lines that were then characterised in detail. Of these lines, three could be shown to have aberrations in adhesion, and of these one appears to have a block in the transport and/or correct folding of the major surface adhesin PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1). Our data expand the known factors involved in this important process and once again highlight the complexity of this phenomenon.
期刊介绍:
Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses.
Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.