Cu‐Driven Active Cu2Se@MXene Heterointerface Reconstruction and Co Electron Reservoir Toward Superior Sodium Storage

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Chengxing Lu, Boyu Li, Mengjie Shi, Qun Li, Kun Liu, Cuiyun Lu, Jingwen Liao, Ziyue Hu, Xiaoyan Wei, Chunsheng Li, Yan Sun, Tong Liu, Ronghui Liu, Qing Zhao
{"title":"Cu‐Driven Active Cu2Se@MXene Heterointerface Reconstruction and Co Electron Reservoir Toward Superior Sodium Storage","authors":"Chengxing Lu, Boyu Li, Mengjie Shi, Qun Li, Kun Liu, Cuiyun Lu, Jingwen Liao, Ziyue Hu, Xiaoyan Wei, Chunsheng Li, Yan Sun, Tong Liu, Ronghui Liu, Qing Zhao","doi":"10.1002/aenm.202405706","DOIUrl":null,"url":null,"abstract":"Heterostructure engineering and active component reconstruction are effective strategies for efficient and rapid charge storage in advanced sodium‐ion batteries (SIBs). Herein, sandwich‐type CoSe<jats:sub>2</jats:sub>@MXene composites are used as a model to reconstruct new active Cu<jats:sub>2</jats:sub>Se@MXene heterostructures by in situ electrochemical driving. The MXene core provides interconnected pathways for electron and ion conduction, while also buffering volumetric expansion to stabilize the structure. This reconstructed Cu<jats:sub>2</jats:sub>Se@MXene heterointerface features abundant sodium storage active sites, enhanced Na<jats:sup>+</jats:sup> adsorption, and diffusion kinetics, thus increasing sodium storage capacity. Moreover, the elevated Co valence state during the discharge process allows it to act as an electron reservoir to provide additional electron supply for Cu<jats:sub>2</jats:sub>Se conversion and accelerate the sodium storage kinetics. When employed as an anode in SIBs, the CoSe<jats:sub>2</jats:sub>@MXene electrode exhibits high capacity (694 mAh g<jats:sup>−1</jats:sup> at 0.1 A g<jats:sup>−1</jats:sup>), excellent rate performance (425 mAh g<jats:sup>−1</jats:sup> at 20 A g<jats:sup>−1</jats:sup>), and exceptional durability (437 mAh g<jats:sup>−1</jats:sup> after 10 000 cycles at 5 A g<jats:sup>−1</jats:sup> with a 0.0014% capacity decay per cycle). The electrochemical reconstruction and sodium storage mechanism of Cu<jats:sub>2</jats:sub>Se@MXene anode is further revealed through ex situ characterization and theoretical calculations. This work provides a new approach for designing advanced conversion‐type anodes for SIBs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"56 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202405706","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Heterostructure engineering and active component reconstruction are effective strategies for efficient and rapid charge storage in advanced sodium‐ion batteries (SIBs). Herein, sandwich‐type CoSe2@MXene composites are used as a model to reconstruct new active Cu2Se@MXene heterostructures by in situ electrochemical driving. The MXene core provides interconnected pathways for electron and ion conduction, while also buffering volumetric expansion to stabilize the structure. This reconstructed Cu2Se@MXene heterointerface features abundant sodium storage active sites, enhanced Na+ adsorption, and diffusion kinetics, thus increasing sodium storage capacity. Moreover, the elevated Co valence state during the discharge process allows it to act as an electron reservoir to provide additional electron supply for Cu2Se conversion and accelerate the sodium storage kinetics. When employed as an anode in SIBs, the CoSe2@MXene electrode exhibits high capacity (694 mAh g−1 at 0.1 A g−1), excellent rate performance (425 mAh g−1 at 20 A g−1), and exceptional durability (437 mAh g−1 after 10 000 cycles at 5 A g−1 with a 0.0014% capacity decay per cycle). The electrochemical reconstruction and sodium storage mechanism of Cu2Se@MXene anode is further revealed through ex situ characterization and theoretical calculations. This work provides a new approach for designing advanced conversion‐type anodes for SIBs.
Cu驱动的活性Cu2Se@MXene异质界面重建和Co电子库对钠的优越储存
异质结构工程和主动成分重构是实现先进钠离子电池高效、快速充电的有效策略。本文以夹层型CoSe2@MXene复合材料为模型,通过原位电化学驱动重建新的活性Cu2Se@MXene异质结构。MXene核心为电子和离子传导提供了相互连接的途径,同时也缓冲了体积膨胀以稳定结构。这种重建的Cu2Se@MXene异质界面具有丰富的钠储存活性位点,增强了Na+的吸附和扩散动力学,从而增加了钠的储存容量。此外,放电过程中Co价态的升高使其成为一个电子储层,为Cu2Se转化提供额外的电子供应,加速了钠的储存动力学。当用作sib的阳极时,CoSe2@MXene电极具有高容量(在0.1 A g−1时为694 mAh g−1),优异的倍率性能(在20 A g−1时为425 mAh g−1)和优异的耐久性(在5 A g−1下进行10,000次循环后为437 mAh g−1,每次循环的容量衰减为0.0014%)。通过非原位表征和理论计算,进一步揭示了Cu2Se@MXene阳极的电化学重构和储钠机理。这项工作为sib的高级转换型阳极的设计提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信