Ethynyl‐Linked Donor–Acceptor Covalent Organic Framework for Highly Efficient Photocatalytic H2O2 Production

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Bowen Li, Junjin Chen, Kang Wang, Dongdong Qi, Tianyu Wang, Jianzhuang Jiang
{"title":"Ethynyl‐Linked Donor–Acceptor Covalent Organic Framework for Highly Efficient Photocatalytic H2O2 Production","authors":"Bowen Li, Junjin Chen, Kang Wang, Dongdong Qi, Tianyu Wang, Jianzhuang Jiang","doi":"10.1002/aenm.202404497","DOIUrl":null,"url":null,"abstract":"Photocatalytic H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> synthesis from H<jats:sub>2</jats:sub>O and O<jats:sub>2</jats:sub> is considered to be one of the most promising alternative approaches for manufacturing H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub>. Developing highly active and selective photocatalysts is of significant in achieving efficient H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> photosynthesis. Herein, an ethynyl‐linked donor–acceptor covalent organic framework (COF), named EBBT‐COF, is prepared from the condensation reaction between an electron‐deficient unit 4,4′,4″‐(1,3,5‐benzenetriyltri‐2,1‐ethynediyl)tris‐benzenamine and an electron‐rich unit benzo[1,2‐b:3,4‐b′:5,6‐b″]trithiophene‐2,5,8‐tricarboxaldehyde. Powder X‐ray diffraction and N<jats:sub>2</jats:sub> adsorption isotherm unveil the crystalline porous hcb network of EBBT‐COF with pores size centered at <jats:italic>ca</jats:italic>. 2.3 nm. Spectroscopic characterizations demonstrate the excellent visible‐light absorption capacity and enhanced photo‐induced charge separation and transport efficiency of EBBT‐COF owing to its donor–acceptor architecture. Density functional theory calculations and electrochemical tests indicate the high activity and selectivity of EBBT‐COF toward 2e<jats:sup>−</jats:sup> O<jats:sub>2</jats:sub> reduction reaction and 2e<jats:sup>−</jats:sup> water oxidation reaction with triethynylbenzene and trithiophene moieties to accelerate O<jats:sub>2</jats:sub>‐to‐H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> and H<jats:sub>2</jats:sub>O‐to‐H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> conversion, respectively. These merits enable EBBT‐COF to be a promising photocatalyst toward H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> generation from H<jats:sub>2</jats:sub>O and O<jats:sub>2</jats:sub> with a H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> yield rate of 5 686 µmol g<jats:sup>−1</jats:sup> h<jats:sup>−1</jats:sup>, an optimal apparent quantum yield of 15.14%, a solar‐to‐chemical conversion efficiency of 1.17% (λ &gt; 400 nm), representing one of the best performance among COF‐based photocatalysts reported thus far.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"10 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404497","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic H2O2 synthesis from H2O and O2 is considered to be one of the most promising alternative approaches for manufacturing H2O2. Developing highly active and selective photocatalysts is of significant in achieving efficient H2O2 photosynthesis. Herein, an ethynyl‐linked donor–acceptor covalent organic framework (COF), named EBBT‐COF, is prepared from the condensation reaction between an electron‐deficient unit 4,4′,4″‐(1,3,5‐benzenetriyltri‐2,1‐ethynediyl)tris‐benzenamine and an electron‐rich unit benzo[1,2‐b:3,4‐b′:5,6‐b″]trithiophene‐2,5,8‐tricarboxaldehyde. Powder X‐ray diffraction and N2 adsorption isotherm unveil the crystalline porous hcb network of EBBT‐COF with pores size centered at ca. 2.3 nm. Spectroscopic characterizations demonstrate the excellent visible‐light absorption capacity and enhanced photo‐induced charge separation and transport efficiency of EBBT‐COF owing to its donor–acceptor architecture. Density functional theory calculations and electrochemical tests indicate the high activity and selectivity of EBBT‐COF toward 2e O2 reduction reaction and 2e water oxidation reaction with triethynylbenzene and trithiophene moieties to accelerate O2‐to‐H2O2 and H2O‐to‐H2O2 conversion, respectively. These merits enable EBBT‐COF to be a promising photocatalyst toward H2O2 generation from H2O and O2 with a H2O2 yield rate of 5 686 µmol g−1 h−1, an optimal apparent quantum yield of 15.14%, a solar‐to‐chemical conversion efficiency of 1.17% (λ > 400 nm), representing one of the best performance among COF‐based photocatalysts reported thus far.
高效光催化生产H2O2的乙基链供受体共价有机框架
由H2O和O2光催化合成H2O2被认为是最有前途的制备H2O2的替代方法之一。开发高活性、高选择性的光催化剂对实现高效的H2O2光合作用具有重要意义。本文通过缺电子单元4,4′,4″‐(1,3,5‐苯三基三2,1‐乙炔二基)三苯胺与富电子单元苯并[1,2‐b:3,4‐b′:5,6‐b″]三噻吩‐2,5,8‐三羧醛之间的缩合反应,制备了乙基连接的供体-受体共价有机骨架(COF),命名为EBBT‐COF。粉末X射线衍射和氮气吸附等温线揭示了EBBT - COF的结晶多孔hcb网络,孔的中心尺寸约为2.3 nm。光谱表征表明,由于其供体-受体结构,EBBT - COF具有优异的可见光吸收能力和增强的光诱导电荷分离和传输效率。密度泛函理论计算和电化学测试表明,EBBT - COF在与三乙基苯和三噻吩的2e - O2还原反应和2e -水氧化反应中具有较高的活性和选择性,分别加速了O2 - to - H2O2和H2O - to - H2O2的转化。这些优点使EBBT - COF成为一种很有前途的光催化剂,用于从H2O和O2生成H2O2, H2O2产率为5 686µmol g−1 h−1,最佳表观量子产率为15.14%,太阳能-化学转换效率为1.17% (λ >;400 nm),是目前报道的性能最好的COF基光催化剂之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信