Motor functional hierarchical organization of cerebrum and its underlying genetic architecture in Parkinson's disease.

IF 4.4 2区 医学 Q1 NEUROSCIENCES
Shuting Bu,Xiaolu Li,Huize Pang,Mengwan Zhao,Juzhou Wang,Yu Liu,Hongmei Yu,Yueluan Jiang,Guoguang Fan
{"title":"Motor functional hierarchical organization of cerebrum and its underlying genetic architecture in Parkinson's disease.","authors":"Shuting Bu,Xiaolu Li,Huize Pang,Mengwan Zhao,Juzhou Wang,Yu Liu,Hongmei Yu,Yueluan Jiang,Guoguang Fan","doi":"10.1523/jneurosci.1492-24.2024","DOIUrl":null,"url":null,"abstract":"Hierarchy has been identified as a principle underlying the organization of human brain networks. However, it remains unclear how the network hierarchy is disrupted in Parkinson's disease (PD) motor symptoms and, how it is modulated by the underlying genetic architecture. The aim of this study was to explore alterations in the motor functional hierarchical organization of the cerebrum and their underlying genetic mechanism. In this study, the brain network hierarchy of each group was described through a connectome gradient analysis among 68 healthy controls (HC), 70 postural instability and gait difficulty (PIGD) subtype, 69 tremor-dominant (TD) subtype, including both male and female participants, according to its motor symptoms. Furthermore, transcription-neuroimaging association analyses using gene expression data from Allen Human Brain Atlas and case-control gradient differences were performed to identify genes associated with gradient alterations. Different PD motor subtypes exhibited contracted principal and secondary functional gradients relative to HC. The identified genes in different PD motor subtypes enriched for shared biological processes like metal ion transport, inorganic ion transmembrane transport. In addition, these genes were overexpressed in Ntsr+ neurons cell, enriched in extensive cortical regions and wide developmental time windows. Aberrant cerebral functional gradients in PD related motor symptoms have been detected, and the motor-disturbed genes have shared biological functions. The present findings may contribute to a more comprehensive understanding of the molecular mechanisms underlying hierarchical alterations in PD.Significant statement The pattern of network hierarchy in different Parkinson's disease (PD) motor subtypes remains unclear. In our study, we used connectome gradient analysis to characterize alterations in the functional hierarchical organization of the cerebrum across PD motor subtypes. Additionally, transcription-neuroimaging association analyses were employed to investigate the genetic mechanisms underlying these gradient changes. Our findings suggest that distinct PD motor subtypes exhibit contracted functional gradients, with genes associated with these gradient alterations enriched in similar biological functions.","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":"8 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/jneurosci.1492-24.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hierarchy has been identified as a principle underlying the organization of human brain networks. However, it remains unclear how the network hierarchy is disrupted in Parkinson's disease (PD) motor symptoms and, how it is modulated by the underlying genetic architecture. The aim of this study was to explore alterations in the motor functional hierarchical organization of the cerebrum and their underlying genetic mechanism. In this study, the brain network hierarchy of each group was described through a connectome gradient analysis among 68 healthy controls (HC), 70 postural instability and gait difficulty (PIGD) subtype, 69 tremor-dominant (TD) subtype, including both male and female participants, according to its motor symptoms. Furthermore, transcription-neuroimaging association analyses using gene expression data from Allen Human Brain Atlas and case-control gradient differences were performed to identify genes associated with gradient alterations. Different PD motor subtypes exhibited contracted principal and secondary functional gradients relative to HC. The identified genes in different PD motor subtypes enriched for shared biological processes like metal ion transport, inorganic ion transmembrane transport. In addition, these genes were overexpressed in Ntsr+ neurons cell, enriched in extensive cortical regions and wide developmental time windows. Aberrant cerebral functional gradients in PD related motor symptoms have been detected, and the motor-disturbed genes have shared biological functions. The present findings may contribute to a more comprehensive understanding of the molecular mechanisms underlying hierarchical alterations in PD.Significant statement The pattern of network hierarchy in different Parkinson's disease (PD) motor subtypes remains unclear. In our study, we used connectome gradient analysis to characterize alterations in the functional hierarchical organization of the cerebrum across PD motor subtypes. Additionally, transcription-neuroimaging association analyses were employed to investigate the genetic mechanisms underlying these gradient changes. Our findings suggest that distinct PD motor subtypes exhibit contracted functional gradients, with genes associated with these gradient alterations enriched in similar biological functions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信