Jaclyn M. L. Walsh, Vincent N. Miao, Anna H. Owings, Ying Tang, Joshua D. Bromley, Samuel W. Kazer, Kyle Kimler, Chelsea Asare, Carly G. K. Ziegler, Samira Ibrahim, Tasneem Jivanjee, Micayla George, Andrew W. Navia, Riley S. Drake, Adam Parker, Benjamin C. Billingsley, Paul Dotherow, Spurthi Tarugu, Sai K. Kota, Hannah Laird, T. Grant Wichman, Yesenia T. Davis, Neha S. Dhaliwal, Yilianys Pride, Yanglin Guo, Michal Senitko, Jessie Harvey, John T. Bates, Gill Diamond, Michael R. Garrett, D. Ashley Robinson, I. J. Frame, Jonathan J. Lyons, Tanya O. Robinson, Alex K. Shalek, Bruce H. Horwitz, Sarah C. Glover, Jose Ordovas-Montanes
{"title":"Variants and vaccines impact nasal immunity over three waves of SARS-CoV-2","authors":"Jaclyn M. L. Walsh, Vincent N. Miao, Anna H. Owings, Ying Tang, Joshua D. Bromley, Samuel W. Kazer, Kyle Kimler, Chelsea Asare, Carly G. K. Ziegler, Samira Ibrahim, Tasneem Jivanjee, Micayla George, Andrew W. Navia, Riley S. Drake, Adam Parker, Benjamin C. Billingsley, Paul Dotherow, Spurthi Tarugu, Sai K. Kota, Hannah Laird, T. Grant Wichman, Yesenia T. Davis, Neha S. Dhaliwal, Yilianys Pride, Yanglin Guo, Michal Senitko, Jessie Harvey, John T. Bates, Gill Diamond, Michael R. Garrett, D. Ashley Robinson, I. J. Frame, Jonathan J. Lyons, Tanya O. Robinson, Alex K. Shalek, Bruce H. Horwitz, Sarah C. Glover, Jose Ordovas-Montanes","doi":"10.1038/s41590-024-02052-z","DOIUrl":null,"url":null,"abstract":"<p>Viral variant and host vaccination status impact infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), yet how these factors shift cellular responses in the human nasal mucosa remains uncharacterized. We performed single-cell RNA sequencing (scRNA-seq) on nasopharyngeal swabs from vaccinated and unvaccinated adults with acute Delta and Omicron SARS-CoV-2 infections and integrated with data from acute infections with ancestral SARS-CoV-2. Patients with Delta and Omicron exhibited greater similarity in nasal cell composition driven by myeloid, T cell and SARS-CoV-2<sup>hi</sup> cell subsets, which was distinct from that of ancestral cases. Delta-infected samples had a marked increase in viral RNA, and a subset of <i>PER2</i><sup>+</sup><i>EGR1</i><sup>+</sup><i>GDF15</i><sup>+</sup> epithelial cells was enriched in SARS-CoV-2 RNA<sup>+</sup> cells in all variants. Prior vaccination was associated with increased frequency and activation of nasal macrophages. Expression of interferon-stimulated genes negatively correlated with coronavirus disease 2019 (COVID-19) severity in patients with ancestral and Delta but not Omicron variants. Our study defines nasal cell responses and signatures of disease severity across SARS-CoV-2 variants and vaccination.</p>","PeriodicalId":19032,"journal":{"name":"Nature Immunology","volume":"56 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41590-024-02052-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Viral variant and host vaccination status impact infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), yet how these factors shift cellular responses in the human nasal mucosa remains uncharacterized. We performed single-cell RNA sequencing (scRNA-seq) on nasopharyngeal swabs from vaccinated and unvaccinated adults with acute Delta and Omicron SARS-CoV-2 infections and integrated with data from acute infections with ancestral SARS-CoV-2. Patients with Delta and Omicron exhibited greater similarity in nasal cell composition driven by myeloid, T cell and SARS-CoV-2hi cell subsets, which was distinct from that of ancestral cases. Delta-infected samples had a marked increase in viral RNA, and a subset of PER2+EGR1+GDF15+ epithelial cells was enriched in SARS-CoV-2 RNA+ cells in all variants. Prior vaccination was associated with increased frequency and activation of nasal macrophages. Expression of interferon-stimulated genes negatively correlated with coronavirus disease 2019 (COVID-19) severity in patients with ancestral and Delta but not Omicron variants. Our study defines nasal cell responses and signatures of disease severity across SARS-CoV-2 variants and vaccination.
期刊介绍:
Nature Immunology is a monthly journal that publishes the highest quality research in all areas of immunology. The editorial decisions are made by a team of full-time professional editors. The journal prioritizes work that provides translational and/or fundamental insight into the workings of the immune system. It covers a wide range of topics including innate immunity and inflammation, development, immune receptors, signaling and apoptosis, antigen presentation, gene regulation and recombination, cellular and systemic immunity, vaccines, immune tolerance, autoimmunity, tumor immunology, and microbial immunopathology. In addition to publishing significant original research, Nature Immunology also includes comments, News and Views, research highlights, matters arising from readers, and reviews of the literature. The journal serves as a major conduit of top-quality information for the immunology community.