{"title":"Optical signatures of lattice strain in chemically doped colloidal quantum wells","authors":"Junhong Yu, Hilmi Volkan Demir, Manoj Sharma","doi":"10.1038/s41467-025-55984-x","DOIUrl":null,"url":null,"abstract":"<p>Lattice strain plays a vital role in tailoring the optoelectronic performance of colloidal nanocrystals (NCs) with exotic geometries. Although optical identifications of lattice strain in irregular-shaped NCs or hetero-structured NCs have been well documented, less is known about optical signatures of the sparsely distributed lattice mismatch in chemically-doped NCs. Here, we show that coherent acoustic phonons (CAPs) following bandgap optical excitations in Cu-doped CdSe colloidal quantum wells (CQWs) offer a unique platform for indirectly measuring the dopant-induced lattice strain. By comparing the behavior of CAPs in Cu-doped and undoped CQWs (i.e., vibrational phase/lifetime/amplitude), we have revealed the driving force of CAPs related to the optical screening of lattice strain-induced piezoelectric fields, which thus allows to determine the strain-induced piezoelectric field of ~10<sup>2</sup> V/m in Cu-doped CdSe CQWs. This work may facilitate a detailed understanding of lattice strain in chemically-doped colloidal NCs, which is a prerequisite for the design of favorable doped colloids in optoelectronics.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"122 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-55984-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lattice strain plays a vital role in tailoring the optoelectronic performance of colloidal nanocrystals (NCs) with exotic geometries. Although optical identifications of lattice strain in irregular-shaped NCs or hetero-structured NCs have been well documented, less is known about optical signatures of the sparsely distributed lattice mismatch in chemically-doped NCs. Here, we show that coherent acoustic phonons (CAPs) following bandgap optical excitations in Cu-doped CdSe colloidal quantum wells (CQWs) offer a unique platform for indirectly measuring the dopant-induced lattice strain. By comparing the behavior of CAPs in Cu-doped and undoped CQWs (i.e., vibrational phase/lifetime/amplitude), we have revealed the driving force of CAPs related to the optical screening of lattice strain-induced piezoelectric fields, which thus allows to determine the strain-induced piezoelectric field of ~102 V/m in Cu-doped CdSe CQWs. This work may facilitate a detailed understanding of lattice strain in chemically-doped colloidal NCs, which is a prerequisite for the design of favorable doped colloids in optoelectronics.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.