Jingzhe Sun, Xiaoming Zhang, Junhang Feng, Xiaofei Ma, Yujia Ji, Shujun Chen, Jihui Li, Dongmei Li, Xiujun Wang, Lin Zhao
{"title":"The transcription factor GmFULc regulates soybean plant height by binding the promoter of a gibberellin-responsive gene","authors":"Jingzhe Sun, Xiaoming Zhang, Junhang Feng, Xiaofei Ma, Yujia Ji, Shujun Chen, Jihui Li, Dongmei Li, Xiujun Wang, Lin Zhao","doi":"10.1093/plphys/kiaf021","DOIUrl":null,"url":null,"abstract":"Plant height is a crucial agronomic characteristic that substantially influences soybean [Glycine max (L.) Merr.] yield. FRUITFULLc (GmFULc) is a MADS-box transcription factor that acts as a growth promoter in soybean; however, the mechanism by which GmFULc regulates soybean height is unknown. This study revealed that GmFULc:GmFULc (the expression of the GmFULc gene driven by its native promoter) soybeans exhibit increased plant height and longer internodes. Conversely, soybean plants containing fulc mutations showed reduced plant height and shortened internodes. Chromatin immunoprecipitation-qPCR revealed GmFULc promotes the expression of gibberellic acid-stimulated Arabidopsis 14 (GmGASA14) and GmGASA32 by directly binding to G-boxes in their promoter regions, leading to notably increased expression of GmGASA14 and GmGASA32 in GmFULc:GmFULc soybean plants and reduced expression in soybean plants containing the fulc-2 mutation. The GmFULc-mediated enhanced expression of GmGASA14 and GmGASA32 increased the gibberellin signal, which may have inhibited gibberellin synthesis by increasing gibberellin 2-oxidase (GmGA2ox) expression and decreasing GA20ox expression. Our findings suggest that GmFULc promoted the expression of GmGASA genes by directly binding to G-boxes in their promoters to regulate soybean plant height.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"30 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf021","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plant height is a crucial agronomic characteristic that substantially influences soybean [Glycine max (L.) Merr.] yield. FRUITFULLc (GmFULc) is a MADS-box transcription factor that acts as a growth promoter in soybean; however, the mechanism by which GmFULc regulates soybean height is unknown. This study revealed that GmFULc:GmFULc (the expression of the GmFULc gene driven by its native promoter) soybeans exhibit increased plant height and longer internodes. Conversely, soybean plants containing fulc mutations showed reduced plant height and shortened internodes. Chromatin immunoprecipitation-qPCR revealed GmFULc promotes the expression of gibberellic acid-stimulated Arabidopsis 14 (GmGASA14) and GmGASA32 by directly binding to G-boxes in their promoter regions, leading to notably increased expression of GmGASA14 and GmGASA32 in GmFULc:GmFULc soybean plants and reduced expression in soybean plants containing the fulc-2 mutation. The GmFULc-mediated enhanced expression of GmGASA14 and GmGASA32 increased the gibberellin signal, which may have inhibited gibberellin synthesis by increasing gibberellin 2-oxidase (GmGA2ox) expression and decreasing GA20ox expression. Our findings suggest that GmFULc promoted the expression of GmGASA genes by directly binding to G-boxes in their promoters to regulate soybean plant height.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.