Establishing performance criteria for evaluating watershed-scale sediment and nutrient models at fine temporal scales

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Aayush Pandit, Sarah Hogan, David T. Mahoney, William I. Ford, James F. Fox, Christopher Wellen, Admin Husic
{"title":"Establishing performance criteria for evaluating watershed-scale sediment and nutrient models at fine temporal scales","authors":"Aayush Pandit, Sarah Hogan, David T. Mahoney, William I. Ford, James F. Fox, Christopher Wellen, Admin Husic","doi":"10.1016/j.watres.2025.123156","DOIUrl":null,"url":null,"abstract":"Watershed water quality models are mathematical tools used to simulate processes related to water, sediment, and nutrients. These models provide a framework that can be used to inform decision-making and the allocation of resources for watershed management. Therefore, it is critical to answer the question “when is a model good enough?” Established performance evaluation criteria, or thresholds for what is considered a ‘good’ model, provide common benchmarks against which model performance can be compared. Since the publication of prior meta-analyses on this topic, developments in the last decade necessitate further investigation, such as the advancement in high performance computing, the proliferation of aquatic sensors, and the development of machine learning algorithms. We surveyed the literature for quantitative model performance measures, including the Nash-Sutcliffe efficiency (NSE), with a particular focus on process-based models operating at fine temporal scales as their performance evaluation criteria are presently underdeveloped. The synthesis dataset was used to assess the influence of temporal resolution (sub-daily, daily, and monthly), calibration duration (< 3 years, 3 to 8 years, and > 8 years), and constituent target units (concentration, load, and yield) on model performance. The synthesis dataset includes 229 model applications, from which we use bootstrapping and personal modeling experience to establish sub-daily and daily performance evaluation criteria for flow, sediment, total nutrient, and dissolved nutrient models. For daily model evaluation, the NSE for sediment, total nutrient, and dissolved nutrient models should exceed 0.45, 0.30, and 0.35, respectively, for ‘satisfactory’ performance. Model performance generally improved when transitioning from short (< 3 years) to medium (3 to 8 years) calibration durations, but no additional gain was observed with longer (> 8 years) calibration. Performance was not significantly influenced by the selection of concentration (e.g. mg/L) or load (e.g. kg/s) as the target units for sediment or total nutrient models but was for dissolved nutrient models. We recommend the use of concentration rather than load as a water quality modeling target, as load may be biased by strong flow model performance whereas concentration provides a flow-independent measure of performance. Although the performance criteria developed herein are based on process-based models, they may be useful in assessing machine learning model performance and we demonstrate one such assessment on a recent deep learning model of daily nitrate prediction across the United States. The guidance presented here is intended to be used alongside, rather than to replace, the experience and modeling judgement of engineers and scientist who work to maintain our collective water resources.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"23 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123156","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Watershed water quality models are mathematical tools used to simulate processes related to water, sediment, and nutrients. These models provide a framework that can be used to inform decision-making and the allocation of resources for watershed management. Therefore, it is critical to answer the question “when is a model good enough?” Established performance evaluation criteria, or thresholds for what is considered a ‘good’ model, provide common benchmarks against which model performance can be compared. Since the publication of prior meta-analyses on this topic, developments in the last decade necessitate further investigation, such as the advancement in high performance computing, the proliferation of aquatic sensors, and the development of machine learning algorithms. We surveyed the literature for quantitative model performance measures, including the Nash-Sutcliffe efficiency (NSE), with a particular focus on process-based models operating at fine temporal scales as their performance evaluation criteria are presently underdeveloped. The synthesis dataset was used to assess the influence of temporal resolution (sub-daily, daily, and monthly), calibration duration (< 3 years, 3 to 8 years, and > 8 years), and constituent target units (concentration, load, and yield) on model performance. The synthesis dataset includes 229 model applications, from which we use bootstrapping and personal modeling experience to establish sub-daily and daily performance evaluation criteria for flow, sediment, total nutrient, and dissolved nutrient models. For daily model evaluation, the NSE for sediment, total nutrient, and dissolved nutrient models should exceed 0.45, 0.30, and 0.35, respectively, for ‘satisfactory’ performance. Model performance generally improved when transitioning from short (< 3 years) to medium (3 to 8 years) calibration durations, but no additional gain was observed with longer (> 8 years) calibration. Performance was not significantly influenced by the selection of concentration (e.g. mg/L) or load (e.g. kg/s) as the target units for sediment or total nutrient models but was for dissolved nutrient models. We recommend the use of concentration rather than load as a water quality modeling target, as load may be biased by strong flow model performance whereas concentration provides a flow-independent measure of performance. Although the performance criteria developed herein are based on process-based models, they may be useful in assessing machine learning model performance and we demonstrate one such assessment on a recent deep learning model of daily nitrate prediction across the United States. The guidance presented here is intended to be used alongside, rather than to replace, the experience and modeling judgement of engineers and scientist who work to maintain our collective water resources.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信